## 21cm Cosmology: Reionization, Heating, and the Dark Ages

Jacqueline N. Hewitt (with Adrian Liu)

### 21cm Cosmology: Reionization, Heating, and the Dark Ages

•• • • • • •

The Big Picture: First-Order Models of Global Properties

Reionization and Beyond: Second-Order Models of Fluctuations

The Ideal: Cosmology from 21cm Tomography

The Reality: Astrophysics, Foregrounds, RFI, and Instruments

**Experiments Past and Future** 

## GOALS: Map the emergence of structure (short term) and probe cosmology and inflation (long term)



# STRATEGY: Map hydrogen structures during and even before the Epoch of Reionization



Hyperfine splitting in ground state causes emission and absorption of radio waves at a frequency of

1420.40575177 MHz

Redshift > 6 means observe at < 200 MHz Low-Frequency Radio Astronomy

#### STRATEGY: Map hydrogen structures



Example: the M81 group of galaxies

Source: National Radio Astronomy Observatory

### THEORETICAL PREDICTIONS: The cosmic microwave background gives us the initial conditions for simulations of structure formation



- Expanding Universe: everything (photons and matter) cools
- (Dark Energy)
- Big Bang nucleosynthesis: dark matter, hydrogen, (deuterium, helium, lithium)
- Gravity: collapse and form structures
- Astrophysics: gas clumps, shocks, stars form, heating, ionization (messy)

#### 21cm line emission or absorption against the CMB

$$\delta T_B = 27 x_{HI} (1 + \delta_b) \left( \frac{T_S - T_{\text{CMB}}}{T_S} \right) \left( \frac{1 + z}{10} \right)^{1/2} \left[ \frac{\partial_r v_r}{(1 + z)H(z)} \right]^{-1} \text{mK}$$

Predictions involve - temperature evolution

- initial power spectrum and density evolution

-

- ionization
- background cosmology
- and redshift distortions due to proper motion

#### FIRST ORDER: Models of Global Properties of the Universe



# GOALS: Map the emergence of structure (short term) and probe lambda-CDM cosmology model and inflation (long term)



Figure courtesy of Max Tegmark



In principle, mapping the large volume would give us

- Tests of the standard model prediction of T(z), H(z), and linear clustering growth
- Tests of modified gravity
- Precision tests of inflation by extending power spectrum to small scales
- Neutrino mass via power spectrum
- Precision tests of inflation via small-scale non-Gaussianity
- Precision tests of non-cold DM by probing galactic scales when linear
- Heating signatures of DM annihilation
- Non-standard physics
- Primordial features in inflation or oscillations in massive fields
- Primordial non-Gaussianity f\_NL ~0.03
- Measure cosmological parameters with higher precision through high SNR made possible by large number of measurable modes

Tegmark & Zaldarriaga 2009 Chen, Meerburg & Münchmeyer 2016 Munoz, Ali-Haimoud & Kamionkowski 2015

#### SEPARATING ASTROPHYSICS FROM COSMOLOGY

- Model the astrophysics well and marginalize over it
- Separate via redshift distortions (use cosine-line-of-sight dependence)
- Go to the highest redshifts when astrophysics is not important (z > 25 or 30 or so)
- BUT: foregrounds are  $>10^4$  larger during EoR and scale as T<sup>-2.5</sup>

CHALLENGING.

#### Square amplitude of 3-D Fourier transform, averaged A "slice" through space over spheres in k-space 10<sup>3</sup> z = 242.62 $\langle \mathbf{x}_{\mathbf{HI}} \rangle_{\mathbf{v}} = \mathbf{1}$ $\langle \delta \mathbf{T_b} \rangle_{\mathbf{v}} = -\,\mathbf{16.6}^{\mathbf{10}^2}$ 10 $\langle \delta T_b \rangle^2 \Delta^2_{21}(k) \ (mK^2)$ . 10<sup>°</sup> $\operatorname{Gpc}$ 10 10 10 10 10<sup>-5</sup> $\delta T_{b} [(1+z)/10]^{-1/2} (mK)$ 10<sup>-6</sup> 10<sup>-2</sup> $10^{-1}$ 10<sup>°</sup> $k (Mpc^{-1})$ -40 -30 -20 -10 0 10 20 30 40 50 Source: Relative to microwave background http://homepage.sns.it/mesinger/21cm\_Movie.html



Power spectrum science z > 6:



See Mesinger, Ewall-Wice & Hewitt 2014

#### IMPORTANT POINTS

- There are (in most plausible models) three power spectrum peaks
- The first and second (reionization and (X-ray) heating) are roughly equally detectable in principle (just considering SNR)
- The third one is much harder to detect in principle (just considering SNR)
- The second and third ones are harder in practice because of systematics (foregrounds, RFI, calibration)
- Astrophysics *and* cosmology form these peaks can we learn to separate them?
- Dark Ages will be really hard

## Mao et al. 2008 – in-depth study of extracting fundamental cosmology during EoR (perfect calibration)

TABLE V. How cosmological constraints depend on the ionization power spectrum modeling and reionization history. We assume observations of 4000 hours on two places in the sky in the range of z = 6.8-8.2 that is divided into three z bins centered at z = 7.0, 7.5, and 8.0, respectively,  $k_{\text{max}} = 2 \text{ Mpc}^{-1}$ ,  $k_{\text{min}} = 2\pi/yB$ , and a quasigiant core configuration (except for FFTT which is a giant core). The  $1\sigma$  errors of ionization parameters in the MID model, marginalized over other vanilla parameters, are listed separately in Table VI.

|        |       | Vanilla alone          |                            |                            |                    |                        |             |                                       |                              |                              |                  |                       |               |
|--------|-------|------------------------|----------------------------|----------------------------|--------------------|------------------------|-------------|---------------------------------------|------------------------------|------------------------------|------------------|-----------------------|---------------|
|        | Model | $\Delta\Omega_\Lambda$ | $\Delta \ln(\Omega_m h^2)$ | $\Delta \ln(\Omega_b h^2)$ | $\Delta n_{\rm s}$ | $\Delta \ln A_{\rm s}$ | $\Delta	au$ | $\Delta \bar{x}_{\rm H}(7.0)^{\rm a}$ | $\Delta \bar{x}_{ m H}(7.5)$ | $\Delta \bar{x}_{ m H}(8.0)$ | $\Delta\Omega_k$ | $\Delta m_{\nu}$ (eV) | $\Delta lpha$ |
| LOFAR  | OPT   | 0.025                  | 0.27                       | 0.44                       | 0.063              | 0.89                   |             |                                       |                              |                              | 0.14             | 0.87                  | 0.027         |
|        | MID   | 0.13                   | 0.083                      | 0.15                       | 0.36               | 0.80                   |             |                                       |                              |                              | 0.35             | 12                    | 0.17          |
| MWA    | OPT   | 0.046                  | 0.11                       | 0.19                       | 0.022              | 0.37                   |             |                                       |                              |                              | 0.056            | 0.38                  | 0.013         |
|        | MID   | 0.22                   | 0.017                      | 0.029                      | 0.097              | 0.76                   |             |                                       |                              |                              | 0.13             | 9.6                   | 0.074         |
| SKA    | OPT   | 0.0038                 | 0.044                      | 0.083                      | 0.0079             | 0.16                   |             |                                       |                              |                              | 0.023            | 0.12                  | 0.0040        |
|        | MID   | 0.014                  | 0.0049                     | 0.0081                     | 0.012              | 0.037                  |             |                                       |                              |                              | 0.043            | 0.36                  | 0.0060        |
| FFTT   | OPT   | 0.00015                | 0.0032                     | 0.0083                     | 0.000 40           | 0.015                  |             |                                       |                              |                              | 0.00098          | 0.011                 | 0.000 34      |
|        | MID   | 0.000 41               | 0.000 38                   | 0.000 62                   | 0.000 36           | 0.0013                 |             |                                       |                              |                              | 0.0037           | 0.0078                | 0.000 17      |
|        | PESS  | 1.1                    | 0.017                      | 0.037                      | 0.010              | 0.19                   |             |                                       |                              |                              |                  | 0.20                  | 0.0058        |
| Planck |       | 0.0070                 | 0.0081                     | 0.0059                     | 0.0033             | 0.0088                 | 0.0043      |                                       |                              |                              | 0.025            | 0.23                  | 0.0026        |
| +LOFAR | OPT   | 0.0066                 | 0.0077                     | 0.0058                     | 0.0031             | 0.0088                 | 0.0043      | 0.0077                                | 0.0084                       | 0.0093                       | 0.0051           | 0.060                 | 0.0022        |
|        | MID   | 0.0070                 | 0.0081                     | 0.0059                     | 0.0032             | 0.0088                 | 0.0043      | 0.18                                  | 0.26                         | 0.23                         | 0.018            | 0.22                  | 0.0026        |
|        | PESS  | 0.0070                 | 0.0081                     | 0.0059                     | 0.0033             | 0.0088                 | 0.0043      | 0.54                                  | 0.31                         | 0.24                         | 0.025            | 0.23                  | 0.0026        |
| +MWA   | OPT   | 0.0067                 | 0.0079                     | 0.0057                     | 0.0031             | 0.0088                 | 0.0043      | 0.0065                                | 0.0067                       | 0.0069                       | 0.0079           | 0.027                 | 0.0014        |
|        | MID   | 0.0061                 | 0.0070                     | 0.0056                     | 0.0030             | 0.0087                 | 0.0043      | 0.32                                  | 0.22                         | 0.29                         | 0.021            | 0.19                  | 0.0026        |
|        | PESS  | 0.0070                 | 0.0081                     | 0.0059                     | 0.0033             | 0.0088                 | 0.0043      | 3.8                                   | 0.87                         | 0.53                         | 0.025            | 0.23                  | 0.0026        |
| +SKA   | OPT   | 0.0031                 | 0.0038                     | 0.0046                     | 0.0013             | 0.0087                 | 0.0042      | 0.0060                                | 0.0060                       | 0.0060                       | 0.0017           | 0.017                 | 0.000 64      |
|        | MID   | 0.0036                 | 0.0040                     | 0.0044                     | 0.0025             | 0.0087                 | 0.0043      | 0.0094                                | 0.014                        | 0.011                        | 0.0039           | 0.056                 | 0.0022        |
|        | PESS  | 0.0070                 | 0.0081                     | 0.0059                     | 0.0033             | 0.0088                 | 0.0043      | 0.061                                 | 0.024                        | 0.012                        | 0.025            | 0.21                  | 0.0026        |
| +FFTT  | OPT   | 0.00015                | 0.0015                     | 0.0036                     | 0.00021            | 0.0087                 | 0.0042      | 0.0056                                | 0.0056                       | 0.0056                       | 0.000 32         | 0.0031                | 0.000 094     |
|        | MID   | 0.000 38               | 0.000 34                   | 0.000 59                   | 0.000 33           | 0.0086                 | 0.0042      | 0.0013                                | 0.0022                       | 0.0031                       | 0.000 23         | 0.0066                | 0.000 17      |
|        | PESS  | 0.0055                 | 0.0064                     | 0.0051                     | 0.0030             | 0.0087                 | 0.0043      | 0.0024                                | 0.0029                       | 0.0040                       | 0.025            | 0.020                 | 0.0010        |

<sup>a</sup>  $\bar{x}_{\rm H}(z)$  denotes the mean neutral fraction at the central redshift z.  $\bar{x}_{\rm H}(z)$ 's and  $A_s$  are completely degenerate from the 21 cm measurement alone. For this reason, the errors shown for  $\ln A_s$  from 21 cm data alone are really not marginalized over the  $\bar{x}_{\rm H}(z)$ 's.

#### STUDY OF IDEAL SKA MEASUREMENTS (no contribution from astrophysics; i.e., neutral fraction = 1 or astrophysics modeled perfectly)

#### Pritchard et al. 2014

**Table 2:** Fiducial parameter values and  $1 - \sigma$  constraints on cosmological parameters. Non-cosmological parameters included in the analysis { $\tau$ ,  $x_H(z=7)$ ,  $x_H(z=7.5)$ ,  $x_H(z=8)$ } are not shown. We take  $k_{\min} = 2$ Mpc<sup>-1</sup> as the limit to linear modes.

|        | $\log \Omega_m h^2$ | $\log \Omega_b h^2$ | $\Omega_{\Lambda}$ | $n_s$  | $\log(A_s/10^{-10})$ | $\Omega_k$ | $dn_s/d\log k$ | $M_{v} (eV)$ |
|--------|---------------------|---------------------|--------------------|--------|----------------------|------------|----------------|--------------|
| Value  | -1.9                | -3.8                | 0.7                | 0.95   | -0.19                | 0          | 0              | 0.3          |
| Planck | 0.028               | 0.0068              | 0.038              | 0.0035 | 0.0097               | 0.0022     | 0.0047         | 0.35         |
| Hera   | 0.0091              | 0.0055              | 0.011              | 0.003  | 0.0088               | 0.0021     | 0.0036         | 0.12         |
| SKA0   | 0.017               | 0.0058              | 0.023              | 0.0032 | 0.009                | 0.0022     | 0.0034         | 0.22         |
| SKA1   | 0.0083              | 0.0051              | 0.01               | 0.003  | 0.0084               | 0.002      | 0.0018         | 0.12         |
| SKA2   | 0.0016              | 0.0048              | 0.0026             | 0.0027 | 0.0081               | 0.0012     | 0.00092        | 0.084        |

## Challenges of Low-Frequency Radio Astronomy

- Sky noise
- Foregrounds
- RFI
- lonospheric fluctuations
- Calibration difficult

Require high speed computation to address – starting to be affordable only now Instrument design must incorporate calibration requirements

The Galaxy - main source of sky noise – plus other radio galaxies

#### 408 MHz Radio Map of the Sky - 1982

Resolution 0.85 degrees



Haslam et al. 1982 A&A Sunn 47.1

### Foregrounds

As large as 10,000 times the signal, and polarized!

- Our Galaxy synchrotron, free-free, spinning dust
- Radio sources galaxies, AGN
- Diffuse cluster emission halos and relics
- IGM free-free emission
- Radio recombination lines

Haslam et al. 1982 - 408 MHz





#### Challenge; Radio Frequency Interference



FORTES satellite



Chippendale and Beresford 2007

#### **NOW THE REALITY: THE EXPERIMENTS**

#### FIRST GENERATION EOR EXPERIMENTS:

Murchison Widefield Array (MWA)

Precision Array for Probing the Epoch of Reionization (PAPER)

Low-Frequency Array (LOFAR)

MIT EoR experiment (MITEoR)



MWA

### LOFAR ("core" of low band antenna

- port

array)

TAL

PAPER



FORTES satellite



First power spectra at 12 < z < 18Ewall-Wice, Dillon, Hewitt, et. al.Sensitivity of 10,000 mK at large kIn pressLimited by MWA cable reflections at small k



#### MODELING THE ASTROPHYSICS WITH 6 PARAMETERS

Zeta = ionization efficiency (uv photons entering IGM)

R = mean free path of ionization photons

T\_vir = minimum virial temperature of haloes that contribute to heating and reionization

 $f_x = X$ -ray efficiency (X-ray photons per baryon in star formation)

alpha\_x = spectral index of X-ray spectrum (black holes vs hot ISM)

nu\_min = X-ray obscuration threshold (X-ray which escape)

See Mesinger, Ferrara & Spiegel 2013; Mesinger, Ewall-Wice & Hewitt 2014; Ewall-Wice et al. 2016

#### FIRST COMPARISON OF DATA TO MODELS

In regime of "cold reionization", only vary Zeta = ionization efficiency (uv photons entering IGM)



Spin T > 10 K at z = 8.4

PAPER 21 cm data and Planck constraints on neutral fraction only

#### See Pober et al. 2015

#### THE FUTURE

FUNDED SECOND GENERATION EOR/HEATING EXPERIMENTS:

Hydrogen Epoch of Reionization Array (HERA) U.S. + Cambridge, UK ~\$12M

Square Kilometer Array Phase 1 – Low (SKA0/1-Low) International E650M Low-freq part around E200M

THIRD GENERATION EOR/HEATING/COSMOLOGY EXPERIMENT:

Full Square Kilometer Array? (SKA2) – estimates at \$2B - \$6B

HERA on steroids?

SKA2 with HERA-like EoR/EoX/DA core?

#### HERA – Hydrogen Epoch of Reionization Array

- HERA-1 is MWA and PAPER
   128 16-dipole tiles and 128 dipoles-with-shaped-ground-screen
- HERA-II is now called "HERA" 350 I 4-m dishes
- HERA-III might be part of SKA (?)



Arizona State, Brown, Berkeley, UCLA, Cambridge, MIT, NRAO, Penn, SNS Pisa, SKA-SA, Capetown, UWash

#### HERA-240 has been funded Seeking additional funding for full build-out to 350 and extension to 50 MHz First array of 37 antennas undergoing commissioning



Fig. 1.— Rendering of the 320-element core (left) of the full HERA-350 array and picture of 19 HERA 14-m, zenith-pointing dishes (with PAPER elements in the background) currently deployed in South Africa (right).

#### HERA TIMELINE



#### Observed Frequency (MHz) 200 150 125 100 75 **Fiducial Heating CDM** Annihilation 10<sup>3</sup> Large Halos PAPER $\widehat{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}{\overset{\text{result}}}{\overset{\text{result}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}{\overset{\text{result}}}}}}}}}}}}}}}}}}}}}}}}$ $\Delta^2$ **HERA-350** $10^{1}$ 12 14 16 18 20 6 8 10 Redshift

Sensitivities assuming foreground avoidance strategy

### HERA DESIGN CHOICES

Fixed dishes to maximize collecting area per dollar

Focal length chosen so reflections are outside EoR window

Smaller field for better calibration and to suppress foregrounds on the horizon

Redundant array for better calibration and power spectrum sensitivity

Compact array for more baselines in EoR window (foreground avoidance strategy)

Outliers and "fractured crystal" for better imaging

Power spectrum science z > 6:



See Mesinger, Ewall-Wice & Hewitt 2014



HERA capabilities: Funded HERA-240 and pending HERA-350-lowfreq

Currently studying cosmology constraints with HERA-350lowfreq

Calculations by A. Ewall-Wice





### **SQUARE KILOMETRE ARRAY**

Composed of SKA-Mid in South Africa SKA-Low in Australia Headquarters in the UK

SKA Phase 1 –
Finishing design
Construction 2018 - 2020
Target first science in 2020
Cost-capped at 650M Euros
Rebaseled in 2015 to meet cap
All (almost?) subsystem PDRs done
System PDR in November

SKA Phase II – In the future.....





#### Similar to LOFAR

- 262144 antennas
- 1024 stations
- 95% in 'Inner Area' of 3km
- 40km arms
- Large central processing F
- Flexible or Focused



**LFAA** 

#### **Project rebaselining recommendations; approved by Board in 2015**

SKA1-Low in Australia should be built.

50% of the planned 262,144 low frequency dipoles should be deployed.

The array should cover the frequency range 50-350 MHz, as planned.

The current planned baseline lengths of ~80km should be retained.

The inclusion of a pulsar search capability for SKA1-Low (currently an Engineering Change Proposal on hold) should be actively explored.

We can **avoid** foregrounds in Fourier space because foregrounds have "flat" spectra and the cosmological density fluctuations have rapid spectral fluctuations. Frequency-dependent instrumental response => "wedge"



Datta, Bowman & Carilli (2010) ApJ, 724, 526 Vendantham, Shankar & Subrahmanyan (2012) ApJ, 745, 176 Trott, Wayth & Tingay (2012) ApJ, 757, 101 Morales et al. (2012) ApJ, 752, 137 Parsons et al. (2012) ApJ, 756, 165 Dillon, Liu et al. (2014) Phys Rev D, 89, 023002

#### **COMPARISONS OF HERA AND SKA**



#### Pritchard et al. 2014

**Figure 2:** Sensitivity plots of HERA (red dashed curve), SKA0 (red), SKA1 (blue), and SKA2 (green). Dotted curve shows the predicted 21cm signal *from the density field alone* assuming  $x_H = 1$  and  $T_S \gg T_{CMB}$ . At z = 20, we also plot the case of  $T_S = 20$ K in the z = 20 panel to give a better sense of the expected 21 cm signal during absorption. Vertical black dashed line indicates the smallest wavenumber probed in the frequency direction  $k = 2\pi/y$ , which may limit foreground removal. *Left panel:* z = 8 *Right panel:* z = 20.

Table 1. Predicted SNRs of 21 cm experiments for an EoR model with 50% ionization at z = 9.5, with 1080 hours observation, integrated over a  $\Delta z$  of  $0.8^*$ .

|                 | Collecting   | Foreground    | Foreground     |
|-----------------|--------------|---------------|----------------|
| Instrument      | Area $(m^2)$ | Avoidance     | Modeling       |
| PAPER           | 1,188        | $0.77\sigma$  | $3.04\sigma$   |
| MWA             | $3,\!584$    | $0.31\sigma$  | $1.63\sigma$   |
| LOFAR NL Core   | 35,762       | $0.38\sigma$  | $5.36\sigma$   |
| <b>HERA-350</b> | 53,878       | $23.34\sigma$ | $90.97\sigma$  |
| SKA1 Low Core   | $416,\!595$  | $13.4\sigma$  | $109.90\sigma$ |

\*Calculations done via 21 cmSense (www.github.com/jpober/ 21cmSense; Pober et al. 2013b, 2014a). Foreground avoidance represents an analysis comparable to Ali et al. (2015), whereas foreground modeling allows significantly more k modes of the cosmological signal to be recovered. DeBoer et al. 2016







