Cosmology with a ~ billion spectra

Elisabeth Krause (Stanford)
Cosmology with a ~billion spectra

Deep, wide, dense spectroscopic survey

- Most detailed map of galaxy distribution
  enables splits by environment
  cross-correlation science

- Measure galaxy power spectrum really, really well
  non-linear scales for $z<1.5$
  linear scales for $1.5<z<3.25$
  power spectrum as function of galaxy type

- Unprecedented signal-to-noise in higher-order statistics
Cosmology with a ~billion spectra

- Measure galaxy power spectrum really, really well
  non-linear scales for $z < 1.5$
  linear scales for $1.5 < z < 3.25$
  power spectrum as function of galaxy type

**Figure 1.** Fractional error in the power spectrum on linear scales ($k = 0.2h\text{Mpc}^{-1}$) that quantifies inhomogeneities for various redshifts as a function of the number of objects surveyed. The dots are projections for DESI: at $z = 1$ DESI will be within a factor of 3 of the ultimate error, but at higher redshift, there is at least a factor of ten more information to be mined by future surveys. LSST will measure many more objects but will have imperfect radial information so therefore less effective information per object.
Cosmology with a ~billion spectra

- Cosmology parameters from RSD power spectrum

lots of information left in the sky

5.4 High Resolution Spectroscopy of a Billion Objects

A most ambitious project would be one that obtained high resolution spectra of a large fraction of LSST objects. Such a Billion Object Apparatus (BOA) would come close to attaining the parameter improvements depicted in the right panel of Fig. 1 and open up many avenues for new discoveries. Here we outline some from cosmic visions report assumes $k_{\text{max}} = 0.5 \, h/\text{Mpc}$
Cosmology with a ~billion spectra

- Cosmology parameters from RSD power spectrum
- Parameter space may evolve with Stage III, Stage IV results
  -> and with theory developments!
- Requires precise models for BAO scale, galaxy power spectrum to k~0.5 h/Mpc
Cosmology with a ~billion spectra

- Cosmology parameters from RSD power spectrum
- Parameter space may evolve with Stage III, Stage IV results -> and with theory developments!
- Requires precise models for BAO scale, galaxy power spectrum to k~0.5 h/Mpc

Linear bias won’t get us there!

Galaxy biasing complex research area - here’s just one example:

Relative velocity effect (Tseliakhovich & Hirata 2010) gives rise to galaxy velocity bias terms, shifts BAO scale (Dalal +2010, Yoo+2011,…)

Blazek+ 2016
Cosmology with a ~billion spectra

- Cosmology parameters from RSD power spectrum
- Parameter space may evolve with Stage III, Stage IV results
  -> and with theory developments!
- Requires precise models for BAO scale, galaxy power spectrum to k~0.5 h/Mpc
- High number density of BOA enables validation of bias models
  precise P(k) measurements beyond k = 0.5 h/Mpc
  P(k) as function of galaxy type

**Bispectrum, and higher-order statistics**
Cosmology with a ~ billion spectra: Bispectrum

- Probability of finding three galaxies at separation \((r,s,t)\) is given by the two, and three point correlation function

\[
P_3(r, s, t) = \bar{n}^3 (1 + \xi(r) + \xi(s) + \xi(t) + \zeta(r, s, t)) \, dV_1 dV_2 dV_3
\]

- \(B(k_1, k_2)\) is the Fourier transform of \(\zeta(r,s,t)\), or in terms of density contrast

\[
\langle \delta(k_1)\delta(k_2)\delta(k_3) \rangle = (2\pi)^3 B(k_1, k_2)\delta^D(k_1 + k_2 + k_3)
\]
Cosmology with a ~ billion spectra: Bispectrum

- With one billion galaxies, can measure *a lot* of triangles!
- S/N per triangle is low, need suitable bins/data compression
- in cosmic variance limit, cumulative S/N scales as

\[
\frac{S/N(B)}{k_{\text{max}}} \propto k_{\text{max}}^6 P(k_{\text{max}}) \approx k_{\text{max}}^4
\]

- high galaxy density of BOA will enable precision Bispectrum measurements, including multi-tracer Bispectra!
- (S/N in projected Bispectra much lower, need spectra)
Cosmology with a ~ billion spectra: Bispectrum

• A toy model bispectrum

\[ B_g(k_1, k_2, k_3) = b_3^3 B_m(k_1, k_2, k_3) + b_1^2 b_2 \left[ P_m(k_1) P_m(k_2) + (2 \text{ cyclic}) \right] + b_1^3 (\text{primordial Bispectrum}) \]

Fig. 1.— Visual representations of triangles forming the bispectrum, \( B(k_1, k_2, k_3) \), with various combinations of wavenumbers satisfying \( k_3 \leq k_2 \leq k_1 \).

Fig. 2.— Shape of the bispectrum, \( B(k_1, k_2, k_3) \). Each panel shows the amplitude of the bispectrum as a function of \( k_2/k_1 \) and \( k_3/k_1 \) for a given \( k_1 \), with a condition that \( k_3 \leq k_2 \leq k_1 \) is satisfied. The amplitude is normalized such that it is unit at each point where the bispectrum takes on the maximum value. For the visual representations of the triangles such as squeezed, elongated, folded, isosceles, see Fig. 1.

(Top Left) The bispectrum from the non-linear gravitational evolution, \( B_m(k_1, k_2, k_3) \) (Eq. (21)), for \( k_1 = 0.01 \, h \text{ Mpc}^{-1} \).

(Top Right) \( B_m(k_1, k_2, k_3) \) for \( k_1 = 0.05 \, h \text{ Mpc}^{-1} \).

(Bottom Left) The bispectrum from the non-linear galaxy biasing, \( P_R(k_1) P_R(k_2) + (2 \text{ cyclic}) \) (the second term in Eq. (14)), for \( k_1 = 0.01 \, h \text{ Mpc}^{-1} \).

(Bottom Right) \( P_R(k_1) P_R(k_2) + (2 \text{ cyclic}) \) for \( k_1 = 0.05 \, h \text{ Mpc}^{-1} \).

Jeong & Komatsu 2009
Cosmology with a ~ billion spectra: Bispectrum

Test galaxy bias models through configuration dependence of contributions to galaxy Bispectrum

- e.g., relative velocity bias (earlier example)
  - Yoo+11, Slepian+15 predicted configuration dependence
  - Slepian+ 2016: $b_v < 0.01$ from CMASS 3pt function
- BOA Bispectra will constrain Stage V bias models

Figure 3. Scale-dependence of the full galaxy bispectrum for two triangular shapes. Three different components contribute to the full galaxy bispectrum in eq. (3.10): The nonlinear evolution of the matter density distribution (dot-dashed), the nonlinear bias (dotted), and the relative velocity effect (dashed). The cubic term in eq. (3.10) is omitted to avoid clutter. The full galaxy bispectrum is shown as solid lines. The bias parameters $b_2/b_1 = 0.1$ and $b_v/b_1 = 0.01$ are assumed.

Figure 8. The top panel shows the $P_1$ coefficient with $b_v = 0$ (equation (53)). The middle panel shows the total $P_1$ coefficient with velocity term included. The bottom panel shows the $P_1$ coefficient due to $b_v$ alone. Note that the relative velocity subtly enhances the number of triangles with two sides ~ $r_1$ by carefully comparing the top two panels; this is made clear in the bottom panel. We have used $b_1 = 1$, $b_2 = 0.1$, $b_v = 0.01$ and weighted by $r_{12}^2/10^3$ Mpc$^{-3}$.

Yoo, Dalal & Seljak 2011

Slepian & Eisenstein 2015
Cosmology with a ~ billion spectra: Bispectrum

\[ B_g(k_1, k_2, k_3) = b_1^3 B_m(k_1, k_2, k_3) + b_1^2 b_2 [P_m(k_1)P_m(k_2) + \text{(2 cyclic)}] + b_1^3 (\text{primordial Bispectrum}) \]

- High S/N Bispectra may uncover new physics
  - Measuring amplitude of primordial non-Gaussianity templates will distinguish between single/multi-field inflation, constrain slow roll
    \[ \sigma(f_{\text{NL}}^{\text{local}}) < 1 \quad \text{<- driven by scale-dep. bias, } z < 1.5 \]
    \[ \sigma(f_{\text{NL}}^{\text{equal}}) \sim \text{a few} \quad \text{<- driven by high-z coverage} \]
    \[ \sigma(f_{\text{NL}}^{\text{coath}}) \sim \text{a few} \]
- Anisotropic non-Gaussianity, search for features -> Cora’s talk
- Plenty of room, and S/N, for new ideas :)

Preliminary!
Cosmology with a ~ billion spectra: Void Cosmology

- Voids enable tests of GR in lowest density environment
- Finding voids requires high-density spectroscopic galaxy catalog
- rapidly developing cosmological probe
  - recent measurements of void clustering (Clampitt+2016), velocity field around voids (Hamaus+2015,2016), void lensing (Melchior +2015, Clampitt+2015, Gruen+2016)
  - much recent progress on models+phenomenology, but concrete parameter space needs more development
Cosmology with a ~ billion spectra

- Parameters from Galaxy Power Spectrum
  lots of information left in the power spectrum
  need to understand galaxies really, really well

- Bispectrum, and higher-order statistics
  galaxy bias, new physics

- Tests of GR, enabled by high galaxy density
  - void cosmology
  - screening tests -> Phil Bull’s (morning) talk

Theorists, please join the BOA discussion room tomorrow!