

## Degeneracy Breaking with CMB+LSS

### Joel Meyers

Canadian Institute for Theoretical Astrophysics

Cosmology with CMB-S4 / Future Cosmic Surveys

Chicago, IL

September 21, 2016

## Forthcoming Data

#### CMB



#### **SIMONS**OBSERVATORY



LSS







## **CMB and LSS Probe Different Physics**



#### CMB

• 2d screen at z=1100



LSS

• 3d volume at low z

- Lensing at z=2
- Decoupling physics
- Decoupling physics
- Probes larger scales

- Many redshift slices
- Traces matter
- Probes smaller scales

## **Degeneracy Breaking**



## Past Example: Geometric Degeneracy



 There exists a well known degeneracy in the primary CMB between curvature and dark energy, since both parameters affect peak positions

## **Breaking Geometric Degeneracy**



#### CMB

• 2d screen at z=1100



LSS

3d volume at low z

• Lensing at z=2

Many redshift slices

- Decoupling physics
- Probes larger scales

- Traces matter
- Probes smaller scales

## **Curvature and Dark Energy Constraints**



- CMB lensing partially breaks the degeneracy since it probes low redshift matter density
- Adding expansion history information from structure measurements strongly breaks the geometric degeneracy

#### Planck (2015); Sherwin, et al. (2011); van Engelen, et al. (2012)

## **Current Example: Neutrino Mass**

- Massive neutrinos are non-relativistic at late times and contribute to the matter power spectrum
- On small scales, neutrinos free stream out of potential wells and suppress the growth of structure
- Small scale matter power is affected by neutrino mass and total matter density



## **Breaking Neutrino Mass Degeneracy**



#### CMB

• 2d screen at z=1100



LSS

3d volume at low z

- Lensing at z=2
- Decoupling physics
- Probes larger scales

- Many redshift slices
- Traces matter
- Probes smaller scales

## Neutrino Mass and Expansion History

- Expansion history information precisely determines the total matter density, which impacts the amplitude of the matter power spectrum
- CMB measurements determine the amplitude of fluctuations on large scales (especially if τ is accurately measured)



# Future Example: Damping Tail and Scale Dependence



 Changes to the shape of the primordial power spectrum and to quantities which affect the damping tail have similar effects on the primary CMB

Dunkley, et al. (2010)

## Breaking Scale Dependence/Damping Tail Degeneracy

## LSS

2d screen at z=1100

• 3d volume at low z

• Lensing at z=2

CMB

- Decoupling physics
- Probes larger scales

- Many redshift slices
- Traces matter
- Probes smaller scales



## $N_{eff}$ and $n_{s}$ Constraints



- Combining CMB and LSS extends the lever arm and better constrains the primordial power spectrum
- Damping tail physics affects the CMB but not LSS, and can therefore be distinguished

## Conclusions

- A wealth of CMB and LSS data is forthcoming
- These probes are sensitive to different physics, which can be leveraged to break degeneracies that exist for either in isolation
- New and interesting parameters which are degeneracy-limited in CMB or LSS alone may not be so when datasets are combined
- Creative exploration of parameter space may yield surprisingly good constraints in combined datasets

