Looking through the same lens: Shear calibration with CMB lensing arxiv:1607.01761

Emmanuel Schaan, Princeton University with Elisabeth Krause, Tim Eifler, Olivier Doré, Hironao Miyatake, Jason Rhodes, David Spergel CMB S4 & Future Surveys, Chicago, Sept. 2016

Elisabeth Krause

Tim Eifler

Olivier Doré Hironao Miyatake

Jason Rhodes

David Spergel

Weak gravitational lensing

Galaxy lensing

perfect disk shear ~1% shape ~20%

→ SNR~5% for one galaxy, SNR~10³ with 10⁹ galaxies

CMB lensing

Arcmin deflections, coherent on degree scale Smoothed peaks, extra power, $E \rightarrow B$, correlates modes

Shear calibration: the case for redundancy

 $< e >= (1 + m) \gamma_{true} + \alpha e_{PSF} + c$ Heymans+06 Taylor Kitching 16

Scary: m(z) degenerate with growth, hence dark energy EOS

"Required" for LSST: < 0.5% (Huterer+06, Massey+12, ES+16)

Image simulations: 3-5% DES (Jarvis+15), 1% KiDS (Fenech-Conti+16)

Difficult:

- Noise/Model biases
- Selection bias: simulate below the detection limit (Hoekstra+15)
- Mode coupling: simulate below the image resolution
- PSF size error
- → Redundancy is valuable

Shear calibration with CMB lensing

Purely empirical, <u>self</u>-calibration No assumption on galaxy population/morphologies

Just the beginning!

Liu+16, Baxter+16, Miyatake Madhavacheril+16, Singh+16 ~10-20% calibration, (mostly) fixed cosmology & nuisances

Questions:

Competitive with image simulations / requirements? Varying cosmology & nuisance? Robustness to photo-z, IA? What combination is best?

Forecast: LSST & CMB S4 lensing

- Observables:
- clustering gal - shear shear - shear gal - CMB lensing shear - CMB lensing CMB lensing auto
- Constrain: cosmology, b_i , m_i , Δ_{zi} , σ_z No prior on b_i , m_i . Priors on Δ_{zi} , σ_z .
- **Realistic, conservative:** Full non-Gaussian covariances Explore likelihood with MCMC
- Built on CosmoLike (Eifler Krause+14)
 Extended to include CMB lensing
 Soon to be public!

CMB S4 lensing can calibrate the shear ~ LSST requirements

Varying cosmo & nuisance params Better at high z where most challenging Purely empirical, self-calibration

CMB S4 lensing replaces a prior on m

Summary: Shear calibration with CMB lensing

- CMB S4 lensing can constrain the shear bias to 0.5%
 ~ LSST requirements
- Purely empirical, self-calibration, no assumption on galaxy population/morphologies
- Works best at high z where most difficult
- Robust to IA, photo-z degradation, non-linearities & baryons, CMB S4 specs
- In the works: "delensing" with CIB, iterative reconstruction, photo-z outliers, correlated mi

More shear self-calibration with CMB lensing!

18,000 deg², 26 sources/arcmin², 0.25 lenses/arcmin², shape noise = 0.26 $\sigma_z/(1+z) = 5\%$ for sources, known to 0.2% for sources $\sigma_z/(1+z) = 1\%$ for lenses, known to 0.06% for lenses

Forecast: LSST

CMB Stage 4

Stage 4: ~500,000 detectors

Beam: 1'

Sensitivity: 1µK'

I_{min}=30,

I_{max,T}=3000, I_{max,E,B}=5000

Foreground cleaned input map

Assumed no systematics

Forecast: CMB S4

ĸ

But, the SNR...

- SNR in K_{CMB} is 75% of K_{gal}; and marginalizing over systematics degrades constraints by factor of a few for LSST
- SNR is not all; it is not only one amplitude; hard is not intuition with high-dimens.
 space

Baxter+16

- Calibrating the shear useful for cosmo params, but also for maps (cf Planck)
- Shear does things CMB lensing can't: small scales, lower z

Why no " m_{CMB} " in CMB lensing?

CMB lensing systematics:

- biases in $<\kappa_{CMB} | \kappa_{CMB} >$: $<S^2 | \kappa_{CMB} >$ $<S^4 >$
- biases in <κ_{CMB} anything>:
 <S² anything>
- Remove with: multiple wavelength project out bispectrum (Osborne+14)
- (Likely) less important in polarization

Galaxy lensing: systematics/uncertain physics

Statistics < Systematics

Render

3/20/16 12:07 PM

Krause Eifler 16 LSST Shear calibration 0.4 Photo-z uncertainties د 0.0 0.0 \times Intrinsic alignments -0.4 Non-linear/baryonic effects 3x2pt no systematics 3x2pt no blending -0.8 3x2pt high nlens 3x2pt baseline Consistent joint analyses -1.10-0.95 -1.05-1.00Wp

→ Signal-to-noise/FoM is not all
 → Systematics are limiting

Shear alone/LSST alone:

Self-calibration to ~2% Relies on mildly non-linear scales

Schaan+16

Lensing-lensing correlations:

- requires auto spectra
- IA always present

Schaan+16

Tracer-lensing correlations:

+ no lensing auto

- + fairly insensitive to cosmology (distance ratios)
- + no IA if perfect photo-z
- + fixed angular scale ← **not** arbitrary small physical scales

CMB S4 lensing can calibrate the shear ~ requirements

while varying cosmo & nuisance params better at high z where most challenging purely empirical, self-calibration

CMB lensing replaces a prior on m

Shear calibration

Large corrections from simulations

The calibration from simulation can be a large factor
→ needs to be precisely measured

Selection bias

Need to go beyond detection limit

Go 1.5mag deeper than limit

Subtlety of selection biases

- (Does NOT imply a multiplicative bias in either algorithm)
- Implies that selection effects can bias the shear by $\sim 5\%$
- These effects are subtle and can be easily missed

Robustness

• IA contamination:

Unaccounted IA in the data produce $< 1\sigma$ bias in m_i, without mitigation

• Non-linearities/baryons:

Varying I_{max} beyond 1000 does not affect m_i much

• Wider photo-z errors:

Weakening prior on photo-z only weakens $m_{\rm i}$ constraints in the lower z-bins

• CMB S4 specs:

 m_i constraints are sensitive to noise, but not much to I_{max} or resolution

Robustness to IA

Robustness to photo-z

Fixing the source photo-z scatter $\sigma_z/(1+z) = 0.05$, Varying the prior on it.

Non-linearities / Baryons

CMB S4 specs?

Noise

Beam

Parameter dependence

Euclid

Schaan+16

WFIRST

Schaan+16