Design considerations for beyond DESI

David Schlegel, Berkeley Lab

Larger maps improve all cosmological parameters

Volume

Number of modes

Larger maps improve all cosmological parameters

Larger maps improve all cosmological parameters

Volume

Number of modes

Larger maps improve all cosmological parameters

Redshift'surveys increasing $10 \times$ every 10 years

 All linear modes mapped by ~2043140 billion
$\log \mathrm{N}$ (galaxies)

All detectable galaxies mapped by ~2061

SDSS; 2009: 929,000

SDSS:̈U, 2014* 2.8 million

HST Ultra-Deep Field
10,000 galaxies / ($11 \mathrm{arcmin}^{2}$)

10 million galaxies $0<z<0.4 \rightarrow$ DESI will map $\sim 100 \%$ of these
120 million galaxies $0<z<1.5 \rightarrow$ DESI will map $\sim 20 \%$
2 billion galaxies $0<z<4 \rightarrow$ DESI will map 0.1%

DESI Technologies

4 meter primary
: 1 meter diam corrector 5000 fiber-robot army 200,000 meters fiber optics 10 spectrographs x 3 camera

- Simple requirements:

Get redshifts

DESI Technologies

6-lens optical corrector, 1-m diameter, includes ADC

DESI Technologies

Focal plate mounting 5000 fiber robots

DESI Technologies

10 spectrographs X 3 cameras/spectrograph

DESI spectrographs not efficient at $z>1.5$

- $\lambda_{\text {max }} / \lambda_{\text {min }}>3.06$ to "guarantee" strong emission features
- $\lambda_{\text {max }} / \lambda_{\text {min }}=980 \mathrm{~nm} / 360 \mathrm{~nm}=2.72$ for DESI
- [OII] from $z=0 \rightarrow 1.6$
- $z=1.6 \rightarrow 2$ will be difficult!
- Sparse Lyman-a from $z>\mathbf{~ B l u e ~}$

DESI Technologies

Wavelength range $360-980 \mathrm{~nm}$ Readout system noise at ~3 e-/pix

Large-format, deep-depletion CCDs

DESI Technologies

Forward-modeling of data will be a big win... SDSS-I operated at S/N ~ huge SDSS-III/BOSS operated at S/N ~ 50 DESI will operate at $\mathrm{S} / \mathrm{N} \sim 10$

```
"data"
```


Beyond DESI

How do we efficiently map z > 1,5?

Galaxies have plenty of photons Atmosphere defines where to look

DESI will map galaxies to $z=1.6$ using [OII] emission line

Galaxies have plenty of photons Atmosphere defines where to look

Could map galaxies to z~2.5 using [OII] emission line

Galaxies have plenty of photons Atmosphere defines where to look

At redshifts z>2.2, easiest to map features in the blue

Beyond DESI:

A concept to extend to $\sim 100 \mathrm{M}$ galaxies
Instrument upgrade to map galaxies $1.6<z<2.2$ Leverage survey using LSST imaging

Beyond DESI: instrument upgrade

Add 4th arm to all 10 spectrograpbs $\lambda=980-1200 \mathrm{~nm}$
Resolution = 6000-7200 Germanium CCDs NIR

Collimator Mirror

New IR camera
with Germanium CCD

Beyond DESI: instrument upgrade

$\lambda=980-1200 \mathrm{~nm}$ is a good atmospheric window from the ground

Beyond DESI: instrument upgrade

$\lambda=980-1200 \mathrm{~nm}$ is also well-matched to Ge CCD detectors

Beyond DESI: instrument upgrade

Ge CCD detectors are in development

- Most fabrication steps identical to silicon CCDs
- Final processing would be at labs
- Readout systems would be identical to CCDs
- Better than HgCd detectors because thermal photons rejecte

Beyond DESI: instrument upgrade

Spectrograph mechanical benches would need re-building to include a 4th camera

Beyond DESI: survey strategy

Use the full power of LSST + DESI instruments

- Upgraded DESI to 360-1200 nm
- Great priors from LSST colors combine w/ low-S/N spectra
- Selection in color space to minimize failures (e.g., BOSS)
- Repeat spectra to recover failures (e.g., GAMA)

Bolton, Schlegel et al. 2012

Beyond DESI platforms

The DESI instrument, an upgrade, or a re-build would technically work well on several platforms:

- Kitt Peak 4-m (DESI platform)
- Cerro Tololo 4-m (Dark Energy Survey platform)
- Magellan 6.5-m with existing f/5 corrector (limited to 2000 fibers)
- Magellan 6.5-m with f/3 corrector and larger FOV
- MMT 6.5-m or SPMT 6.5-m (twins of Magellan)

Beyond DESI: Conclusions

DESI will map $\sim 100 \%$ of modes at $z<0.4$
~20\% of modes at $z<1.5$
$\sim 1 \%$ of modes at $z<4$

DESI upgrades + LSST could map $\sim 5 \mathrm{X}$ more modes

- Better-matched to LSST lensing kernel
- Better-matched to CMB S-4

For this Cosmic Visions Process...

- DESI + LSST redshifting should be demonstrated
- Instrument development "incremental"
- Increase in science reach "dramatic"

