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SAMPLING VARIANCE CANCELLATION
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Toy model: Gaussian fluctuations around 1

Primordial non-Gaussianity: Rescale galaxies by ⇠
⇥
1 + (b� 1)fNL/`

2
⇤

Dalal et al. (2008)



SAMPLING VARIANCE CANCELLATION

Toy model: Gaussian fluctuations around 1

Primordial non-Gaussianity: Rescale galaxies by

In principle, can 
measure ratio 
with infinite 
precision from 
single mode
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⇠
⇥
1 + (b� 1)fNL/`

2
⇤

Seljak (2009)
McDonald & 
Seljak (2009)

Dalal et al. (2008)



SAMPLING VARIANCE CANCELLATION
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Fractional change of power spectra for fNL=1: Up to 3x increase at low l



SAMPLING VARIANCE CANCELLATION
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Compare to sampling variance noise: “By how many sigma do Cl’s change if fNL=1?”

3𝜎 for fNL=1

0.3𝜎 for fNL=1
but can cancel 
sampling 
variance
by measuring ratios of Cl’s!
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FORECAST INGREDIENTS

Limber Cl’s for galaxy-galaxy, galaxy-κ and κ-κ:

Notes for code

(Dated: September 17, 2016)

I. FISHER FORECASTING AT THE FIELD LEVEL

A. Single galaxy sample cross CMB lensing

Our data vector is d = (�g,), with auto- and cross-spectra given by (e.g. [1])
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Our goal is to estimate the parameter ↵, which enters as the amplitude of the scale- and redshift-dependent fractional
bias correction �. We consider two examples:

• Primordial non-Gaussianity: In this case we are interested in ↵ = f
NL

. The scale dependent halo-bias induced
by local primordial non-Gaussianity for f

NL

= 1 is (e.g. [2])
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Here b is the linear bias of the halo sample, �c = 1.686 is the linear overdensity of spherical collapse, T (k) is the
transfer function, D(z) is the linear growth function normalized to 1/(1 + z) in matter domination, ⌦m,0 is the
matter density today, and H

0

is the Hubble constant today. We compute all spectra CXY using the total power
spectrum P = P

tot,tot (CDM+baryons+neutrinos) in Eqs. (1)-(3). This is slightly incorrect because galaxies
should not include neutrinos, but this should not a↵ect the scale-dependent bias corrections on large scales.

• Neutrino mass: In this case we want to determine ↵ = m⌫ . When computing line of sight integrals over power
spectra to get C`’s, we now have to distinguish between galaxies, which are due to CDM + baryons (’no⌫’),
and , which is due to CDM + baryons + neutrinos (’tot’). Instead of working with the di↵erent power spectra
in Eqs. (1)-(3), we use P = P

tot,tot in all three integrals and fix this mistake by introducing a scale-dependent
fractional bias correction for the galaxies (because they are not a↵ected by neutrino fluctuations)
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All power spectra on the right-hand side are evaluated with the fiducial neutrino mass mfid

⌫ = 0.06 eV. Note
that this gives the correct Cgg for m⌫ = mfid

⌫ because P
no⌫,no⌫ = P 2

tot,no⌫/Ptot,tot. Also note that we are only
interested in the signature of neutrino mass through the scale-dependent bias correction, which is a very clean
signature of neutrino mass because it cannot be mimicked by other e↵ects.

We compute the error of ↵ with the Fisher matrix F↵↵ =
P

`(2`+ 1)(F↵↵)`, where the Fisher matrix per mode is
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Here, the derivatives with respect to ↵ evaluated at fiducial value ↵
0

are given by
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•α = amplitude of scale-dependent bias: fNL or m𝜈

•β(k, z) = scale-dependent bias:

CMB lensing reconstruction κ from CMB-S4 (assume 𝜎FWHM = 1’, NTT = 1 !K’)

Various LSS samples: SDSS, DESI, LSST, [CIB]Notes for code
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FORECAST INGREDIENTS

Fisher analysis for amplitude of scale-dependent bias (fNL or m𝜈)

Split LSS samples into few redshift bins (typically 2-3)

Marginalize over one bias parameter per redshift bin

Marginalize over worst-case scenario where changes in total matter power 
spectrum (e.g. due to different cosmology) are perfectly degenerate with 
scale-dependent bias:

3

therefore given by a block-diagonal matrix with inverse of the blocks on the diagonal. We can therefore compute the
Fisher matrix as

Fij =
X

`

@d`

@✓i
[cov(d`,d`)]

�1

@d`

@✓j
. (16)

Here d` is the sub-vector of d that contains all cross-spectra at multipole `, i.e.

d` = (C00

` , C01

` , . . . , C0,N�1

` , C11

` , C12

` , . . . , C1,N�1

` , . . . , CN�1,N�1

` ), (17)

This vector has N(N + 1)/2 entries for every `. Its covariance is therefore a N(N + 1)/2⇥N(N + 1)/2 matrix that
can be easily inverted as long as the number of tracers or redshift bins is N . 100 (we have N . 15 for the redshift
bins we assume). The computational cost can be further reduced by binning in `, but this is not needed for our
applications here which take less than a minute using Python on a laptop.

We find that numerical Fisher forecasts at the field level agree perfectly with the ones obtained from the same
Fisher analysis at the power spectrum level. This makes sense because we assume Gaussian fields throughout, so all
information in the fields is contained in their pseudo-C` power spectra. In practice, in our implementation, the Fisher
analysis at the field level runs somewhat faster, because the matrices that need to be inverted are smaller.

III. DEGENERACIES WITH CHANGES IN THE TOTAL POWER SPECTRUM

So far we have fixed the total power spectrum given by a fixed fiducial cosmology. We only looked at measuring
PNG or neutrino mass from the scale dependence of galaxy bias. More realistically, the total power spectrum changes
with cosmology, and we should marginalize over this. The worst case scenario is if the scale-dependence of changes
in the total power spectrum is the same as that from scale-dependent bias. We consider this worst case scenario to
see how much this degrades constraints.

In detail, we introduce a ’fake’ parameter ↵
fake

that rescales the total power spectrum as

P (k = `/�, z) ! P (k = `/�, z) [1 + ↵
fake

�
fake

(k = `/�, z)]2 , (18)

where �
fake

resembles the scale- and redshift-dependence of the fractional bias change � due to PNG or neutrino
mass. For ↵ = f

NL

, we set �
fake

= � evaluated using b = 1 + z, which gives �
fake

(k, z) / z/[k2T (k)] during matter
domination. We use a fiducial value of ↵

fake

= 0 and then marginalize over it in the Fisher analysis to see how
much constraints can degrade due to degeneracies between scale-dependent galaxy bias and changes in the total
(CDM+baryons+neutrinos) power spectrum.

Note that even with perfect degeneracies we should still be able to get information if sampling variance cancellation
occurs in overlapping volumes. So this can also be regarded as a test to see how much sample variance cancellation
contributes to the overall constraints: If sample variance cancellation is driving the constraints, marginalizing over
↵
fake

should not degrade constraints much; if instead most information comes from scale dependence of cross-spectra
and not sample variance cancellation, then marginalizing over ↵

fake

should substantially degrade constraints.

IV. DESCRIPTION OF SAMPLES

A. LSST

We use dn/dz from Fig. in [? ]. This only shows z  4, but extrapolate it to higher z where stated.

[1] M. LoVerde, Phys. Rev. D 93, 103526 (2016), arXiv:1602.08108.
[2] A. Slosar, C. Hirata, U. Seljak, S. Ho, and N. Padmanabhan, JCAP 8, 031 (2008), arXiv:0805.3580.
[3] U. Seljak, Physical Review Letters 102, 021302 (2009), arXiv:0807.1770.

For most results, exclude LSS auto-spectra to avoid potential systematics

Assume all surveys overlap on the sky (though probe different volume if z 
range does not overlap)
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LSS SAMPLES

11

4

Sample N
objects

BOSS LRG z=0-1 1.31⇥ 106

SDSS r < 22 z=0-0.5 8.98⇥ 107

SDSS r < 22 z=0.5-0.8 1.82⇥ 107

DESI BGS z=0-0.4 8.71⇥ 106

DESI BGS z=0.4-0.5 1.95⇥ 105

DESI LRG z=0.6-1.3 3.34⇥ 106

DESI ELG z=0.6-0.8 3.34⇥ 106

DESI ELG z=0.8-2 1.35⇥ 107

DESI QSO z=0.6-2 1.28⇥ 106

LSST i < 25 z=0-1 1.4⇥ 109

LSST i < 25 z=1-2 4.75⇥ 108

LSST i < 25 z=2-3 2.95⇥ 107

LSST i < 25 z=3-4 7.31⇥ 106

TABLE I. Number of objects in each sample.



REDSHIFT KERNELS
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REDSHIFT KERNELS

LSST
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CORRELATION COEFFICIENT WITH CMB 
LENSING SIGNAL



SAMPLING VARIANCE CANCELLATION S /N

Correlation      of combined LSS sample and CMB lensing κ is ~93%

Sampling variance cancellation improves signal-to-noise of e.g. fNL as

15

⇢`

S

N
/ 1p

1� ⇢2`

➡ Expect ~3x improvement from sampling variance cancellation if using 
only combined LSS sample and CMB lensing κ

Gain even more if using all cross-spectra

Seljak (2009)
McDonald & 
Seljak (2009)
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LSS ONLY

All LSS auto- and cross-spectra. Marginalize over bias parameters and fake fNL.

Not bad, but also not great

Precision needed to separate 
multi-/single-field inflation

17



ADDING CMB LENSING

All LSS auto- and cross-spectra. Marginalize over bias parameters and fake fNL. CMB lensing: 𝜎FWHM = 1’, NTT = 1 !K’.

Adding CMB lensing gives
•2x improvement for SDSS/DESI
•10x improvement with LSST
•Driven by SV cancellation

18



Excluding g-g auto spectra gives
•30% degradation for SDSS/DESI
•2.5x degradation with LSST

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake fNL. CMB lensing: 𝜎FWHM = 1’, NTT = 1 !K’.
19

EXCLUDING GALAXY-GALAXY AUTO SPECTRA

No galaxy-
galaxy auto



Gorecki, Abate, et al. (2014)
So far, used i<25 “gold” sample at 0 < z < 4

➡ Extrapolate to 4 < z < 6
➡ Use i<27 10 years

BETTER LSST?

20



EXTRAPOLATING LSST TO 4<z<6

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake fNL. CMB lensing: 𝜎FWHM = 1’, NTT = 1 !K’.

•Extrapolating LSST to 4<z<6: 15% better
•i<27, 10 year sample: 2.2x better

21

No galaxy-
galaxy auto
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ADDING PERFECT “FAKE” CMB LENSING TRACER

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake fNL. CMB lensing: 𝜎FWHM = 1’, NTT = 1 !K’.

Base =

Base

Base

Base

Base

Base

No galaxy-
galaxy auto

No galaxy-
galaxy auto

• 2x better if more 
galaxies at 2<z<6

• Only 10% better 
with g-g auto

Base With galaxy-
galaxy auto

(dn/dz matched to CMB lensing kernel, no shot noise, bias b=1+z)



No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake fNL. CMB lensing: 𝜎FWHM = 1’, NTT = 1 !K’.

NO CIB
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•Before LSST, CIB improves 6x-2x
•With LSST, CIB improves only 20% 
•Residual dust contamination at 

low l is critical

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake fNL. CMB lensing: 𝜎FWHM = 1’, NTT = 1 !K’.
CIB: 4 Planck frequencies, assume their best-fit model and 1% residual dust.

CIB+

24

WITH CIB



PRIMORDIAL NON-GAUSSIANITY

25

LSS probes fNL~1. Multi-field inflation would be ruled out if fNL>1!

Adding CMB lensing to LSS helps (10x improvement with LSST)

Can exclude galaxy-galaxy auto spectra. Then, unknown auto systematics
• do not bias expectation values 
• only affect error bars as                                                                              

Alternatively, go to space and use galaxy-galaxy auto: SPHEREx

Adding more galaxies at 2 < z < 6 helps

Very sensitive to lmin, i.e. need large area  
Also sensitive to shot noise

CIB could also help, but worry about residual dust contamination at low l

var(CAB
` ) =

⇥
(CAB

` )2 + CAA
` CBB

`

⇤
/(2`+ 1)

hCAB
` i
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NEUTRINO

MASS
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NEUTRINO MASS

Ignore main signal from shape of total matter power spectrum

Only use signal from scale-dependent bias

This adds to main signal from shape of total matter power spectrum 
(independent information)

Villaescusa-Navarro et al (2014)
LoVerde (2016)

27

Notes for code

(Dated: September 18, 2016)

I. FISHER FORECASTING AT THE FIELD LEVEL

A. Single galaxy sample cross CMB lensing

Our data vector is d = (�g,), with auto- and cross-spectra given by (e.g. [1])
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Our goal is to estimate the parameter ↵, which enters as the amplitude of the scale- and redshift-dependent fractional
bias correction �. We consider two examples:

• Primordial non-Gaussianity: In this case we are interested in ↵ = f
NL

. The scale dependent halo-bias induced
by local primordial non-Gaussianity for f

NL

= 1 is (e.g. [2])
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Here b is the linear bias of the halo sample, �c = 1.686 is the linear overdensity of spherical collapse, T (k) is the
transfer function, D(z) is the linear growth function normalized to 1/(1 + z) in matter domination, ⌦m,0 is the
matter density today, and H

0

is the Hubble constant today. We compute all spectra CXY using the total power
spectrum P = P

tot,tot (CDM+baryons+neutrinos) in Eqs. (1)-(3). This is slightly incorrect because galaxies
should not include neutrinos, but this should not a↵ect the scale-dependent bias corrections on large scales.

• Neutrino mass: In this case we want to determine ↵ = m⌫ . When computing line of sight integrals over power
spectra to get C`’s, we now have to distinguish between galaxies, which are due to CDM + baryons (’no⌫’),
and , which is due to CDM + baryons + neutrinos (’tot’). Instead of working with the di↵erent power spectra
in Eqs. (1)-(3), we use P = P

tot,tot in all three integrals and fix this mistake by introducing a scale-dependent
fractional bias correction for the galaxies (because they are not a↵ected by neutrino fluctuations)

�(k, z) =
�b

b
=

1

mfid

⌫

P
tot,no⌫(k, z)� P

tot,tot(k, z)

P
tot,tot(k, z)

. (5)

All power spectra on the right-hand side are evaluated with the fiducial neutrino mass mfid

⌫ = 0.06 eV. Note
that this gives the correct Cgg for m⌫ = mfid

⌫ because P
no⌫,no⌫ = P 2

tot,no⌫/Ptot,tot. Also note that we are only
interested in the signature of neutrino mass through the scale-dependent bias correction, which is a very clean
signature of neutrino mass because it cannot be mimicked by other e↵ects.

We compute the error of ↵ with the Fisher matrix F↵↵ =
P

`(2`+ 1)(F↵↵)`, where the Fisher matrix per mode is

(F↵↵)` =
1

2

1

X

abcd=0

@Cab
`

@↵
(C�1)bc`

@Ccd
`

@↵
(C�1)da` . (6)

We obtain

(F↵↵)` =
1

2 (1� r2` )
2

2

4

 

Cgg
`,↵

Cgg
`

!

2

+ 2r2l
Cg

`,↵

Cg
`

 

(1 + r2` )
Cg

`,↵

Cg
`

� 2
Cgg

`,↵

Cgg
`

!

3

5 . (7)

Here, the derivatives with respect to ↵ evaluated at fiducial value ↵
0

are given by

Cgg
`,↵ =

Z

dzW 2

g (z)P (`/�, z)b2(z)
⇥

2�(k = `/�, z) + 2↵
0

�2(k = `/�, z)
⇤

(8)

Cg
`,↵ =

Z

dzWg(z)W(z)P (`/�, z)b(z)�(k = `/�, z). (9)

degenerate with 
constant bias

scale-dependent 
bias



NEUTRINO MASS FROM SCALE-DEPENDENT BIAS

All LSS auto- and cross-spectra. Marginalize over bias parameters but not fake m𝜈. CMB lensing: 𝜎FWHM = 1’, NTT = 1 !K’.
28

Constraints can be 
pretty good if using all 
auto- and cross-spectra
(need g-g auto spectra)

No Pmm(k)
shape info

Really 
preliminary!



NEUTRINO MASS FROM SCALE-DEPENDENT BIAS

29

Promising constraints from CMB lensing x LSS

Need galaxy-galaxy auto

Sensitive to CMB-S4 specifications: 2x worse CMB beam and noise  
degrades 𝜎(m𝜈) from scale-dependent bias by ~30% 

Depends on lmax (e.g. 1.5-2x worse for lmax=1000 instead of 2000)

Degeneracies with changes of total matter power spectrum can degrade 
constraints somewhat (1.5x-2x)

No Pmm(k)
shape info
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MEASURING BIAS /

3D DARK MATTER

30



BIAS CONSTRAINTS /  3D DARK MATTER

With signal-dominated CMB lensing maps, can constrain bias

Error should go like 1/Nmodes, so sub-% level achievable

Error even smaller with sampling variance cancellation (by 1/(1-r2))

Once bias parameters all measured:

• Divide each sample by its bias to get dark matter density at each redshift

• Get 3D dark matter modes of the universe, including their amplitude!

Ue-Li Pen (2004)
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CONCLUSIONS

CMB lensing x LSS is useful for primordial non-Gaussianity, neutrino 
mass, and measuring 3D dark matter modes

Relies on sampling variance cancellation to measure scale-dependent bias

Especially CMB lensing x LSST very promising for fNL

fNL forecasts promising even if galaxy-galaxy auto-spectra are excluded 
(avoiding unknown systematics)

Neutrino mass constraints from scale-dependent bias need galaxy-galaxy 
auto-spectra

All preliminary! Comments welcome :)
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BONUS SLIDES
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FORECAST INGREDIENTS:  FISHER ANALYSIS

Fisher analysis at the power spectrum level

Fisher analysis at the field level

Agree if all power spectra and fields are included

Fij =
X

`

2`+ 1

2

1X

abcd=0

@Cab
`

@✓i
(C�1)bc`

@Ccd
`

@✓j
(C�1)da`

3

therefore given by a block-diagonal matrix with inverse of the blocks on the diagonal. We can therefore compute the
Fisher matrix as

Fij =
X

`

@d`

@✓i
[cov(d`,d`)]

�1

@d`

@✓j
. (16)

Here d` is the sub-vector of d that contains all cross-spectra at multipole `, i.e.

d` = (C00

` , C01

` , . . . , C0,N�1

` , C11

` , C12

` , . . . , C1,N�1

` , . . . , CN�1,N�1

` ), (17)

This vector has N(N + 1)/2 entries for every `. Its covariance is therefore a N(N + 1)/2⇥N(N + 1)/2 matrix that
can be easily inverted as long as the number of tracers or redshift bins is N . 100 (we have N . 15 for the redshift
bins we assume). The computational cost can be further reduced by binning in `, but this is not needed for our
applications here which take less than a minute using Python on a laptop.

We find that numerical Fisher forecasts at the field level agree perfectly with the ones obtained from the same
Fisher analysis at the power spectrum level. This makes sense because we assume Gaussian fields throughout, so all
information in the fields is contained in their pseudo-C` power spectra. In practice, in our implementation, the Fisher
analysis at the field level runs somewhat faster, because the matrices that need to be inverted are smaller.

III. DEGENERACIES WITH CHANGES IN THE TOTAL POWER SPECTRUM

So far we have fixed the total power spectrum given by a fixed fiducial cosmology. We only looked at measuring
PNG or neutrino mass from the scale dependence of galaxy bias. More realistically, the total power spectrum changes
with cosmology, and we should marginalize over this. The worst case scenario is if the scale-dependence of changes
in the total power spectrum is the same as that from scale-dependent bias. We consider this worst case scenario to
see how much this degrades constraints.

In detail, we introduce a ’fake’ parameter ↵
fake

that rescales the total power spectrum as

P (k = `/�, z) ! P (k = `/�, z) [1 + ↵
fake

�
fake

(k = `/�, z)]2 , (18)

where �
fake

resembles the scale- and redshift-dependence of the fractional bias change � due to PNG or neutrino
mass. For ↵ = f

NL

, we set �
fake

= � evaluated using b = 1 + z, which gives �
fake

(k, z) / z/[k2T (k)] during matter
domination. We use a fiducial value of ↵

fake

= 0 and then marginalize over it in the Fisher analysis to see how
much constraints can degrade due to degeneracies between scale-dependent galaxy bias and changes in the total
(CDM+baryons+neutrinos) power spectrum.

Note that even with perfect degeneracies we should still be able to get information if sampling variance cancellation
occurs in overlapping volumes. So this can also be regarded as a test to see how much sample variance cancellation
contributes to the overall constraints: If sample variance cancellation is driving the constraints, marginalizing over
↵
fake

should not degrade constraints much; if instead most information comes from scale dependence of cross-spectra
and not sample variance cancellation, then marginalizing over ↵

fake

should substantially degrade constraints.

IV. DESCRIPTION OF SAMPLES

A. LSST

We use dn/dz from Fig. in [? ]. This only shows z  4, but extrapolate it to higher z where stated.

[1] M. LoVerde, Phys. Rev. D 93, 103526 (2016), arXiv:1602.08108.
[2] A. Slosar, C. Hirata, U. Seljak, S. Ho, and N. Padmanabhan, JCAP 8, 031 (2008), arXiv:0805.3580.
[3] U. Seljak, Physical Review Letters 102, 021302 (2009), arXiv:0807.1770.
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B. Combined sample cross CMB lensing

It is straightforward to extend this to a combined sample I =
P

i ciIi. We just replace Cg
`,↵ by CI

`,↵ =
P

i ciC
Ii
`,↵ ,

and similarly Cgg
`,↵ by CII

`,↵ =
P

ij cicjC
IiIj
`,↵ .

C. Marginalizing over bias

For a combined sample I =
P

i ciIi, we have C
I =

P

i ciC
Ii. For each individual sample (which can be a redshift

bin of a larger sample), we introduce a redshift- and scale-independent bias parameter bi that we want to marginalize
over. These bias parameters rescale the fiducial (redshift-dependent) bias that we assume in the line of sight integrals,
i.e. bi = 1 means that those assumed biases are compatible with the data, whereas bi = 1.1 means that all biases are
10% higher in the data than what we assumed in the fiducial model.

We then have CI =
P

i cibiC
Ii, so that (no sum)

CI
`,bi = ciC

Ii (10)

and

CII
`,bi = 2

X

j

cicjb
fid

j CIiIj , (11)

where bfidi = 1.

D. Special case: Scale and redshift-independent bias correction

It is useful to consider the special case where � does not depend on k or z, and the fiducial value for the parameter
↵
0

= 0, and the galaxy sample has no shot noise, (nP )�1 ! 0. Then, Cg
,↵ /Cg = � and Cgg

,↵ /Cgg = 2�, and the
Fisher matrix becomes

(F↵↵)` =
�2(1� r2` )(2� r2` )

(1� r2` )
2

. (12)

The Fisher error from a single mode is then

�↵ = (F↵↵)
�1/2
` =

s

(1� r2` )

�2(2� r2` )
. (13)

This becomes arbitrarily small for high correlation r ! 1, with the
p

1� r2` scaling as expected from the sample
variance cancellation argument [3]. It is less clear how to see this from the full expression in Eq. (7). MS: Any ideas?

II. FISHER FORECASTING AT THE POWER SPECTRUM LEVEL

We assume the Gaussian covariance

cov(ĈUV
`
1

, ĈU 0V 0

`
2

) = �`
1

`
2

1

2`
1

+ 1

⇣

ĈUU 0

`
1

ĈV V 0

`
1

+ ĈUV 0

`
1

ĈV U 0

`
1

⌘

, (14)

where the Ĉ contain noise and U, V, U 0, V 0 2 {, Ii}. The data vector contains all possible cross-spectra Cij , where
we take j � i to use every spectrum exactly once. We then order the data vector as

d = (C00

`
min

, C01

`
min

, . . . , C0,N�1

`
min

, C11

`
min

, C12

`
min

, . . . , C1,N�1

`
min

, . . . , CN�1,N�1

`
min

, C00

`
min

+1

, . . . , CN�1,N�1

`
max

), (15)

where N is the number of fields, e.g. N = 3 if we use  and two LSS tracers I
1

and I
2

. Then, assuming Gaussian
covariance for all cross-spectra, the covariance matrix cov(d,d) of the data vector d is block-diagonal. Its inverse is

where
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where N is the number of fields, e.g. N = 3 if we use  and two LSS tracers I
1

and I
2

. Then, assuming Gaussian
covariance for all cross-spectra, the covariance matrix cov(d,d) of the data vector d is block-diagonal. Its inverse is
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SCALE-DEPENDENT BIAS FROM NEUTRINOS

35

Fractional change of power spectra for m𝜈=1eV

degenerate 
with bias


