CMB LENSING X LSS: SAMPLING VARIANCE CANCELLATIONS & MULTI-TRACER ANALYSIS

Marcel Schmittfull UC Berkeley & LBNL (-> IAS)

with Uros Seljak

CMB S4/Future Cosmic Surveys, Chicago, Sep 21 2016

TALK OUTLINE

- 1 Sampling variance cancellation
- 2 Forecast ingredients
- 3 Primordial non-Gaussianity
- 4 Neutrino mass
- 5 Measuring galaxy bias to get dark matter in 3D

All results are **preliminary**!

2

SAMPLING

VARIANCE

CANCELLATION

- Toy model: Gaussian fluctuations around 1
- Primordial non-Gaussianity: Rescale galaxies by $\sim \left[1 + (b-1)f_{
 m NL}/\ell^2\right]$

Dalal et al. (2008)

- Toy model: Gaussian fluctuations around 1
- Primordial non-Gaussianity: Rescale galaxies by $\sim \left[1 + (b-1)f_{\rm NL}/\ell^2\right]$ Dalal et al. (2008)

5

Fractional change of power spectra for f_{NL} =1: Up to 3x increase at low *l*

Compare to sampling variance noise: "By how many sigma do C_l 's change if $f_{NL}=1$?"

FORECAST

INGREDIENTS

FORECAST INGREDIENTS

- CMB lensing reconstruction κ from CMB-S4 (assume $\sigma_{FWHM} = 1', N_{TT} = 1 \mu K'$)
- Various LSS samples: SDSS, DESI, LSST, [CIB]
- Limber C_l 's for galaxy-galaxy, galaxy- κ and κ - κ :

$$\begin{split} C_{\ell}^{gg} &= \int \mathrm{d}z \, W_g^2(z) P(\ell/\chi, z) \left\{ b^2(z) \left[1 + \alpha \,\beta(k = \ell/\chi, z) \right]^2 + \left[n_{\mathrm{com}}(z) P(\ell/\chi, z) \right]^{-1} \right\} \\ C_{\ell}^{g\kappa} &= \int \mathrm{d}z \, W_g(z) W_{\kappa}(z) P(\ell/\chi, z) b(z) \left[1 + \alpha \,\beta(k = \ell/\chi, z) \right] \\ C_{\ell}^{\kappa\kappa} &= \int \mathrm{d}z \, W_{\kappa}^2(z) P(\ell/\chi, z) + N_{\ell}^{(0)}. \end{split}$$

- α = amplitude of scale-dependent bias: f_{NL} or m_{ν}
- $\beta(k, z)$ = scale-dependent bias:

$$\beta(k,z) = \frac{\Delta b}{b} = 3\frac{(b-1)}{b}\frac{\Omega_{m,0}\delta_c}{k^2 T(k)D(z)} \left(\frac{H_0}{c}\right)^2 \quad \text{or} \quad \frac{1}{m_{\nu}^{\text{fid}}}\frac{P_{\text{tot,no\nu}}(k,z) - P_{\text{tot,tot}}(k,z)}{P_{\text{tot,tot}}(k,z)}$$

9

FORECAST INGREDIENTS

- Fisher analysis for amplitude of scale-dependent bias (f_{NL} or m_{ν})
- Split LSS samples into few redshift bins (typically 2-3)
- Marginalize over one bias parameter per redshift bin
- Marginalize over worst-case scenario where changes in total matter power spectrum (e.g. due to different cosmology) are perfectly degenerate with scale-dependent bias:

$$P(k = \ell/\chi, z) \rightarrow P(k = \ell/\chi, z) \left[1 + \alpha_{\text{fake}} \beta_{\text{fake}}(k = \ell/\chi, z)\right]^2$$

• For most results, exclude LSS auto-spectra to avoid potential systematics

 Assume all surveys overlap on the sky (though probe different volume if z range does not overlap)

LSS SAMPLES

Sample	$N_{ m objects}$
BOSS LRG $z=0-1$	1.31×10^6
SDSS $r < 22 \ z=0-0.5$	8.98×10^7
SDSS $r < 22 \ z = 0.5 - 0.8$	1.82×10^7
DESI BGS $z=0-0.4$	8.71×10^6
DESI BGS $z=0.4-0.5$	1.95×10^5
DESI LRG $z=0.6-1.3$	3.34×10^6
DESI ELG $z=0.6-0.8$	3.34×10^6
DESI ELG $z=0.8-2$	1.35×10^7
DESI QSO $z=0.6-2$	1.28×10^6
LSST $i < 25 \ z=0-1$	1.4×10^9
LSST $i < 25 \ z = 1-2$	4.75×10^8
LSST $i < 25 \ z=2-3$	2.95×10^7
LSST $i < 25 \ z = 3-4$	7.31×10^6

REDSHIFT KERNELS

REDSHIFT KERNELS

CORRELATION COEFFICIENT WITH CMB LENSING SIGNAL

• Correlation ρ_{ℓ} of combined LSS sample and CMB lensing κ is ~93%

• Sampling variance cancellation improves signal-to-noise of e.g. *f*_{NL} as

$$\frac{S}{N} \propto \frac{1}{\sqrt{1 - \rho_{\ell}^2}}$$

Seljak (2009) McDonald & Seljak (2009)

- Expect ~3x improvement from sampling variance cancellation if using only combined LSS sample and CMB lensing κ
- Gain even more if using all cross-spectra

PRIMORDIAL NON-GAUSSIANITY

LSS ONLY

All LSS auto- and cross-spectra. Marginalize over bias parameters and fake f_{NL} .

All LSS auto- and cross-spectra. Marginalize over bias parameters and fake f_{NL} . CMB lensing: $\sigma_{FWHM} = 1'$, $N_{TT} = 1 \mu K'$.

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake f_{NL} *. CMB lensing:* $\sigma_{FWHM} = 1'$, $N_{TT} = 1 \mu K'$.

BETTER LSST?

Gorecki, Abate, et al. (2014)

[•] Extrapolate to 4 < z < 6

→ Use i<27 10 years

EXTRAPOLATING LSST TO 4 < z < 6

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake f_{NL}. CMB lensing: $\sigma_{FWHM} = 1'$, $N_{TT} = 1 \mu K'$.

ADDING PERFECT "FAKE" CMB LENSING TRACER

(dn/dz matched to CMB lensing kernel, no shot noise, bias b=1+z)

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake f_{NL} . CMB lensing: $\sigma_{FWHM} = 1'$, $N_{TT} = 1 \mu K'$.

NO CIB $2 \leq \ell < 2000, f_{\text{sky}} = 0.5, \text{ no } I_i \times I_i$ $\kappa_{\rm CMB}$ +SDSS +DESI $+LSST_{i < 25}$ 3 5 2 4 6 $\sigma(f_{\rm NL})$

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake f_{NL} . *CMB lensing:* $\sigma_{FWHM} = 1'$, $N_{TT} = 1 \mu K'$. 23

WITH CIB

No LSS auto spectra, all LSS cross spectra. Marginalize over bias parameters and fake f_{NL} . *CMB lensing:* $\sigma_{FWHM} = 1'$, $N_{TT} = 1 \mu K'$. *CIB: 4 Planck frequencies, assume their best-fit model and* 1% *residual dust.*

PRIMORDIAL NON-GAUSSIANITY

• LSS probes $f_{NL} \sim 1$. Multi-field inflation would be ruled out if $f_{NL} > 1!$

- Adding CMB lensing to LSS helps (10x improvement with LSST)
- Can exclude galaxy-galaxy auto spectra. Then, unknown auto systematics
 - do not bias expectation values $\langle C_{\ell}^{AB} \rangle$
 - only affect error bars as $\operatorname{var}(C_{\ell}^{AB}) = \left[(C_{\ell}^{AB})^2 + \frac{C_{\ell}^{AA} C_{\ell}^{BB}}{\ell} \right] / (2\ell + 1)$
- Alternatively, go to space and use galaxy-galaxy auto: SPHEREx
- Adding more galaxies at 2 < z < 6 helps
- Very sensitive to *l*_{min}, i.e. need large area
 Also sensitive to shot noise
- CIB could also help, but worry about residual dust contamination at low *l*

NEUTRINO

MASS

NEUTRINO MASS

Villaescusa-Navarro et al (2014) LoVerde (2016)

- **Ignore main signal** from shape of total matter power spectrum
- Only use signal from scale-dependent bias $\frac{\Delta b}{b} = \frac{1}{m_{\nu}^{\text{fid}}} \frac{P_{\text{tot,no\nu}}(k,z) P_{\text{tot,tot}}(k,z)}{P_{\text{tot,tot}}(k,z)}$
- This adds to main signal from shape of total matter power spectrum (independent information)

NEUTRINO MASS FROM SCALE-DEPENDENT BIAS

All LSS auto- and cross-spectra. Marginalize over bias parameters but not fake m_{ν} . CMB lensing: $\sigma_{\text{FWHM}} = 1'$, $N_{TT} = 1 \,\mu\text{K'}$.

NEUTRINO MASS FROM SCALE-DEPENDENT BIAS

No *P*_{mm}(*k*) shape info

- Promising constraints from CMB lensing x LSS
- Need galaxy-galaxy auto
- Sensitive to CMB-S4 specifications: 2x worse CMB beam and noise degrades σ(m_ν) from scale-dependent bias by ~30%
- Depends on l_{max} (e.g. 1.5-2x worse for l_{max} =1000 instead of 2000)
- Degeneracies with changes of total matter power spectrum can degrade constraints somewhat (1.5x-2x)

5

MEASURING BIAS / 3D DARK MATTER

BIAS CONSTRAINTS / 3D DARK MATTER

Ue-Li Pen (2004)

- With signal-dominated CMB lensing maps, can constrain bias
- Error should go like $1/N_{modes}$, so sub-% level achievable
- Error even smaller with sampling variance cancellation (by $1/(1-r^2)$)
- Once bias parameters all measured:
 - Divide each sample by its bias to get dark matter density at each redshift
 - Get 3D dark matter modes of the universe, including their amplitude!

CONCLUSIONS

- CMB lensing x LSS is useful for primordial non-Gaussianity, neutrino mass, and measuring 3D dark matter modes
- Relies on sampling variance cancellation to measure scale-dependent bias
- Especially CMB lensing x LSST very promising for *f*_{NL}
- *f*_{NL} forecasts promising even if galaxy-galaxy auto-spectra are excluded (avoiding unknown systematics)
- Neutrino mass constraints from scale-dependent bias need galaxy-galaxy auto-spectra
- All preliminary! Comments welcome :)

BONUS SLIDES

FORECAST INGREDIENTS: FISHER ANALYSIS

• Fisher analysis at the field level

$$F_{ij} = \sum_{\ell} \frac{2\ell + 1}{2} \sum_{abcd=0}^{1} \frac{\partial C_{\ell}^{ab}}{\partial \theta_i} (C^{-1})_{\ell}^{bc} \frac{\partial C_{\ell}^{cd}}{\partial \theta_j} (C^{-1})_{\ell}^{da}$$

• Fisher analysis at the power spectrum level

$$F_{ij} = \sum_{\ell} \frac{\partial \mathbf{d}_{\ell}}{\partial \theta_i} [\operatorname{cov}(\mathbf{d}_{\ell}, \mathbf{d}_{\ell})]^{-1} \frac{\partial \mathbf{d}_{\ell}}{\partial \theta_j}$$

where $\mathbf{d} = (C_{\ell_{\min}}^{00}, C_{\ell_{\min}}^{01}, \dots, C_{\ell_{\min}}^{0,N-1}, C_{\ell_{\min}}^{11}, C_{\ell_{\min}}^{12}, \dots, C_{\ell_{\min}}^{1,N-1}, \dots, C_{\ell_{\min}}^{N-1,N-1}, C_{\ell_{\min}+1}^{00}, \dots, C_{\ell_{\max}}^{N-1,N-1}),$

$$\operatorname{cov}(\hat{C}_{\ell_1}^{UV}, \hat{C}_{\ell_2}^{U'V'}) = \delta_{\ell_1\ell_2} \frac{1}{2\ell_1 + 1} \left(\hat{C}_{\ell_1}^{UU'} \hat{C}_{\ell_1}^{VV'} + \hat{C}_{\ell_1}^{UV'} \hat{C}_{\ell_1}^{VU'} \right)$$

Agree if all power spectra and fields are included

SCALE-DEPENDENT BIAS FROM NEUTRINOS

Fractional change of power spectra for m_{ν} =1eV $m_{\nu} = 0.06 \,\mathrm{eV}$ 0.010 degenerate with bias 0.008 $(P_{
m no\,
u} - P_{
m tot})/P_{
m tot}$ 0.006 0.004 0.002 0.000 $-0.002L_{10}^{-5}$ 10^{-3} 10^{-2} 10^{0} 10^{-4} 10⁻¹ 10^{2} 10¹ $k \left[h \, \mathrm{Mpc}^{-1} \right]$