Where should we be looking post DESI/LSST

Anže Slosar

Chicago Future Surveys

Introduction

- Parameters will be constrained to some very high precision after CMB S4 + DESI + LSST, but there is more information
- Getting further is hard, both statistically and systematically
- So where should we be looking?
- Two basic ways in which experiments can be complementary:
 - observing the same fields and "cross-correlate"
 - ▶ observing independently, but with different parameter degeneracy directions ← this talk

Sharing modes

Parameter degeneracies

- Some degeneracies easy to understand, some are somewhat counter-intuitive.
- Perhaps easiest to take a "fake experiment" driven approach:
 - ▶ given Fisher matrix for CMB-S4 + X, generate cosmological models
 - for each model make prediction for *observables* for possible future observations
 - if the spread correlates with a parameter of interest, meauring that observable at the sufficient precision will lower that parameter error
- An example . . .

 m_{ν}, S_{4}

Input Fisher matrices

- Got three Fisher matrices for CMB S4:
 - $\Lambda \text{CDM} + \sum m_{\nu}$ from Joel Meyers
 - ACDM $+ \sum m_{
 u} + N_{
 m eff}$ from Joel Meyers
 - ► wACDM from Alessandro Manzotti
- ▶ S4 assumes "1 μ K-arcmin, 1 arcmin beam, $f_{\rm sky} = 0.4$, with Planck high-ell data on an additional 20% of the sky, and an error of .01 on tau from the low-ell Planck data"
- ▶ S4 utilizes primary C_{ℓ} is temperature (to $\ell = 3000$) and polarization (to $\ell = 5000$) and 4-point lensing reconstruction
- DESI based off Pat McDonald's code, assumes whatever is the latest
- LSST based off Pat McDonald and is for LSS and WL only
- For each combination, I drew 1000 models, so extremes are reaching 3-sigma tails
- Last plots were done this morning, so scope for errors is above average...

 $m_{\nu}, S4$

 $m_{\nu}, S_4 + LSST$

 $m_{\nu}, S_{4}+DESI$

 $m_{\nu}, S_4 + LSST + DESI$

 $N_{\rm eff}, S_4$

 $N_{\rm eff}, S_4 + LSST$

 $N_{\rm eff}, S_4 + DESI$

 $N_{\rm eff}, S_4 + LSST + DESI$

w (no ν !), S4+DESI

 $n_s, S_4 + DESI + LSST$

Other parameters

- Inflationary n_s, α_s: small-scale measurements of linear power spetrum, e.g. from Lyman-α forest could help, but not in general
- non-Gaussianity: in cross-correlations, potentially huge opportunities of exploiting Dalal effect sans systematics, but no direct degeneracy breaking
- ► tensor modes: claims in the literature that 21-cm could do very well $(r \sim 10^{-9} \text{ Book}, \text{ Kamionkowski and Schmidt})$

Conclusions

- It is 2025, deep inside S4+DESI+LSST, you can do one thing before you die, what do you do?
- For m_{ν} :
 - Measure σ_8 to sub-percent precision or $f\sigma_8$ to percent precision
 - Measure Hubble parameter to sub-percent precision
 - Measure low- $z D_a$ to sub-percent precision
 - \blacktriangleright BAO parameters don't add much, τ surprisingly doesn't add much
- For $N_{\rm eff}$:
 - Measure slope of the power spectrum to sub-percent precision
 - Measure BAO parameters at subpercent precision, H₀ would also help
 - τ helps marginally
- Basic survey observables, BAO and RSD, still seem to have a long way to go in terms of helping others achieve their dreams
- $f\sigma_8$ and σ_8 about equally useful which is easier to measure?
- Power spectrum shape is really just one-parameter