Photometric Redshift Calibration with Extremely Large Telescopes

Jeffrey Newman, U. Pittsburgh / PITT-PACC

Analysis Coordinator and acting Photo-z Working Group convener, LSST Dark Energy Science Collaboration
• The context in ~2020+: LSST
 – Euclid, WFIRST, etc. will have similar requirements

• The importance of photometric redshifts for cosmology

• The importance of GMT for photometric redshifts
 – GMT is likely the best ELT for photo-z calibration
 – The greatest impact of GMT on cosmology should come via photo-z calibration
 – A well-designed photo-z calibration survey would be a terrific dataset for studying galaxy evolution!

• What sort of training / calibration dataset could be achieved with GMT?
A brief review of LSST

• 8m diameter survey telescope, deep imaging in 6 filters (ugrizy)
• 30 sec images of 10 sq. deg. at a time
 • 900 visits per night, cover visible sky every 3 nights
• 10-year total survey: combine for extremely deep imaging over 50% of sky
• Science enabled:
 – Cosmology (dark matter, dark energy, testing GR, etc.)
 – Mapping the Milky Way
 – Revealing the Transient Universe
 – Inventory of the Solar System
LSST constrains dark energy in many ways... all will rely on redshift information

- LSST will constrain dark energy via 4 major probes:
 - Weak gravitational lensing
 - Baryon Acoustic Oscillations
 - Type Ia supernovae
 - Cluster counts
 (Plus strong lensing, etc.)

- For all of these, we want to measure some observable as a function of redshift
Spectroscopy provides ideal redshift measurements – but is infeasible for large samples

- At LSST “gold sample” ($i<25.3$) depths, ~180 hours on a 10m telescope to determine a redshift (70% of time) spectroscopically
- With a next-generation, 5000 fiber spectrograph on a 10m telescope, still >50,000 telescope-years to measure redshifts for LSST “gold” weak lensing sample (4 billion galaxies)!

- Alternative: use broad spectral features to determine z : a photometric redshift
 - Advantage: high multiplexing
 - Disadvantages: lower precision, calibration uncertainties

Credit: ESO
Two basic Photo-z methods: Template fitting and training-based

- **Template fitting**: use galaxies with known z to calibrate set of underlying galaxy spectral energy distributions (SEDs) and photometric band-passes
 - Determine posterior probability distribution for $z | ugrizy$
 - Needs spectra of galaxies spanning full range of possible properties to tune templates, establish priors, etc.

- **Training-based**: Use galaxies with known redshift and uniform/well-understood sampling to determine a relationship between z and colors
 - The training set MUST span full range of properties & z of galaxies
 - **Pro**: Can take advantage of progress in machine learning & stats
 - **Con**: Sensitive to systematic incompleteness in training sets; extrapolate poorly
Two spectroscopic needs for photo-z's: **calibration** and **training**

- For LSST weak lensing and supernovae, individual-object photo-z's do not need high precision, but the **calibration** must be accurate
 - bias ($\delta_z = \langle z_p - z_s \rangle$), and error in scatter, $\sigma(\sigma_z) = \sigma(\text{RMS}(z_p - z_s))$, must both be $< 0.002(1+z)$

- Science reach, especially for BAO and clusters, improves as photo-z errors get smaller: better **training sets** allow LSST to perform better than requirements
 - Training sets will contribute to calibration, including via cross-correlations. Perfect training sets can solve calibration needs.

Zhan 2006, JCAP
Expected photo-z performance for LSST ugrizy

Green: Requirements on actual performance; grey: requirements on performance with perfect template knowledge (as in these sims)
Spectroscopic training set requirements

- Goal: make δ_z and $\sigma(\sigma_z)$ so small that systematics are subdominant
- Many estimates of training set requirements (Ma et al. 2006, Bernstein & Huterer 2009, Hearin et al. 2010, LSST Science Book, etc.)
- General consensus that roughly 20k-30k extremely faint galaxy spectra are required to characterize:
 - Typical z_{spec}-z_{phot} error distribution
 - Accurate catastrophic failure rates for all objects with $z_{\text{phot}} < 2.5$
 - Characterize all outlier islands in z_{spec}-z_{phot} plane via targeted campaign (core errors easier to determine)
- Those numbers of redshifts are achievable with GMT, if multiplexing is high enough
What qualities do we desire in our training sets?

• Sensitive spectroscopy of faint objects (to $i=25.3$
 - Need a combination of large aperture and long exposure times; >20 Keck-nights (=4 GMT-nights) equivalent per target, minimum

• High multiplexing
 - Obtaining large numbers of spectra is infeasible without it
What qualities do we desire in our training sets?

- Coverage of full ground-based window
 - Ideally, from below 4000 Å to ~1.5μm
 - Require multiple features for secure redshift

Comparat et al. 2013, submitted
What qualities do we desire in our training sets?

- Significant resolution (R>~4000) at red end
 - Allows redshifts from [OII] 3727 Å doublet alone, key at z>1

Comparat et al. 2013, submitted
What qualities do we desire in our training sets?

- Field diameters > ~20 arcmin
 - Need to span several correlation lengths for accurate clustering measurements (key for galaxy evolution science and cross-correlation techniques)
 - $r_0 \sim 5 \, h^{-1} \, \text{Mpc}$ comoving corresponds to ~7.5 arcmin at $z=1$, 13 arcmin at $z=0.5$

- Many fields
 - Minimizes impact of sample/cosmic variance.
 - e.g., Cunha et al. (2012) estimate that 40-150 ~0.1 deg2 fields are needed for DES for sample variance not to impact errors (unless we get clever)

Cunha et al. 2012
GMT can be particularly well-suited to this work

- For photo-z calibration, field of view and multiplexing are key: doubling the number of slits/fibers is as useful as doubling the collecting area.

- ~40 LSST "gold sample" lensing objects per square arcmin: to get ~2500x multiplexing, need at least 60 arcmin² FOV, but more is MUCH better as can optimize targets.

- MANIFEST could be VERY nice for this work; GMACS is close to being the spectrograph we'd like.
Biggest concern: incompleteness in training sets

- In current deep redshift surveys (to $i \sim 22.5/R \sim 24$), 30-60% of targets fail to yield secure (>95% confidence) redshifts
- Losses are worst at the faint end
- Redshift success rate varies with galaxy color, redshift, etc.
- In DEEP2, best parts of BRI color space have ~90% redshift success
- 4 night GMT depth would yield ~70% completeness; achieving 90% would require ~25 nights/pointing

Data from DEEP2 (Newman et al. 2013) and zCOSMOS (Lilly et al. 2009)
Note: even for 100% complete samples, current false-z rates would compromise Dark Energy inference

Based on actual redshift distributions for ANNz-defined DES bins in mock catalog from Huan Lin, UCL & U Chicago, provided by Jim Annis

- Only the highest-confidence redshifts may be useful for calibration / training: lowers spectroscopic completeness further
Conclusions

- GMT is likely the best ELT for photo-z training & calibration
- The greatest impact of GMT on cosmology is via photo-z's
- Minimum photo-z training survey, ~70% complete:
 - 15 widely-separated pointings, 4 nights/pointing
 = 60 clear nights, 30,000 spectra to $i = 25.3$
 - Sample objects over full range of galaxy SEDs, $0 < z < 3.7$
 - This would be a VERY interesting galaxy-evolution survey
 - LSST DESC Clusters WG is interested in cluster sight-line surveys

- Our dream survey: 50 widely-separated pointings, 25 nights/pointing = 3.4 clear years, 100,000 spectra to $i = 25.3$
 - This would be ~19 clear years with Subaru/PFS.

- Even the dream survey should be systematically incomplete.
 Cross-correlation methods (Newman 2008) can solve this problem.
I. Throw out objects lacking secure photo-z calibration
 – ID regions in ugrizy space where redshift failures occurred
 – Eliminating a fraction of sample has modest effect on FoM

II. Incorporate additional information
 – Longer exposure/wider wavelength range spectroscopy (JWST, etc.) for objects that fail to give redshifts in first try
 – Deep, medium-band/multiwavelength imaging in limited regions to get sample with secure, accurate photo-z’s as training set
 – Develop comprehensive model of galaxy spectral evolution constrained by redshifts obtained

III. Cross-correlation techniques
Effect of rejecting objects with particularly low or particularly high photo-z’s

- Can mitigate catastrophic outlier impact by throwing out objects with photo-z’s in problematic ranges
- Plots at right: weak lensing error degradation (vs. random errors only) as change minimum redshift (x axis) and maximum redshift (different-colored curves)

Hearin et al. 2010
Cross-correlation methods: exploiting redshift information from galaxy clustering

- Galaxies of all types cluster together: trace same dark matter distribution
- Galaxies at significantly different redshifts do not cluster together
- From observed clustering of objects in one sample with another (as well as information from their clustering on their own), can determine fraction of objects in overlapping redshift range

Photometric sample (LSST)

Spectroscopic sample (DEEP2)
Higher-resolution information can be obtained by cross-correlating with spectroscopic samples

- Key advantage: spectroscopic sample can be systematically incomplete and include only bright galaxies

Blue: z_{phot} distribution of objects with $0.7 < z_{\text{phot}} < 0.9$

Black: True z distribution of sample, spanning 24 widely-separated fields

Red: Cross-correlation reconstruction with only a R<24, 4 deg2 survey
Absorption-line studies can contribute to cross-correlation samples

Menard et al. 2013
Absorption-line studies can contribute to cross-correlation samples

Menard et al. 2013