XMASS

Y. Suzuki
Kamioka Observatory, Institute for Cosmic Ray Research ICRR), University of Tokyo
And
Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo
Physics Objectives of XMASS

Multi-purpose liq. Xenon detector

• Final Goal: 10 ton fiducial mass, 25 ton total (2.5mφ)
 – pp-solar neutrinos: $\nu + e \rightarrow \nu + e$
 – Double beta decay $^{136}\text{Xe} \rightarrow ^{136}\text{Ba} + 2e^-$
 – Dark Matter: $\chi + \text{Xe} \rightarrow \chi + \text{Xe}$

\Rightarrow Phase-I (100 kg fid.): dedicated to a search for WIMPs dark matter
 – Search down to $\sigma_{SI} \sim \text{a few } 10^{-45} \text{ cm}^2$
 – BG level in the fiducial volume: $\sim 10^{-4} /\text{kg/keV/day}$

12/07/25

Y. Suzuki @IDM2012 in Chicago
The phase-I XMASS detector

• Detector
 – Single phase (scintillation only) liquid Xenon detector
 – 100 kg fid. mass, [835 kg inner mass (0.8 mφ)]
 – 630 hexagonal & 12 round PMTs with 28-39% Q.E.
 – photocathode coverage: > 62% inner surface: : 14.7±1.2 pe/keV
 • Can achieve low energy threshold
 – Sensitive also to electron/γ events
Detector Construction

• 2009.11: PMT holder and PMT installation

• 2010.09: Construction Completed
Commissioning run

- **Calibration**
 - Source Rod (57Co, 241Am, 137Cs, 109Cd, 55Fe)
 - External sources: 60Co, 137Cs, 232Th, Neutron
- **Normal Data taking (physics runs)**
- **Development of Software**
- **Change of the physical condition of Xenon.**
 - High/Low pressure runs, O2 runs to change absorption length, etc.
- **Xe Gas run** Important to identify the BG
- **RI measurement of the detector parts (attach materials at the end of the calibration rod)**

CM runs ended because the calibration rod fell off and stuck
Energy and vertex reconstruction

For 57Co (122keV, γ-rays)

- Energy resolution: \sim4% rms
- High p.e. yield: 14.7 ± 1.2 pe/keV
- Position Resolution:
 - 1.4 cm rms (0cm: center)
 - 1 cm rms (\pm20cm)
We anticipated that the most backgrounds come from PMT γ (measured by Ge detector) (shown by yellow).

But we found unexpected BG which dominates below 100–200 keV.

In the signal region below 10 keVee, it amounts 2 order of magnitude larger than PMT BG.
• Suspected detector parts were examined again, and found

Aluminum seal used between quartz window and metal body of the PMTs contains ^{238}U (upper chain) and ^{210}Pb, ^{210}Pb on Cu surface (as usual)
• BG below 5 keV: not explained by Al-seal and surface 210Pb

• GORE-TEX: between PMT and holder used for a light seal contains up to \(\sim 6 \pm 3\% \) of modern carbon

• GORE-TEX might explain
 – But parameters (ex. transparency of light inside of GORE-TEX) are not well known

• There may be unidentified sources of BG or something else.

• We will remove GORE-TEX in future detector refurbishment

\[m_{DM} = 18 \text{ GeV} \]
\[\sigma_{SI} = 1.6 \times 10^{-41} \text{ cm}^2 \]
Internal BG

- $^{222}\text{Rn}: \text{214Bi} \rightarrow \text{214Po}(164\mu s) \rightarrow \text{210Pb}$
 - $8.2\pm0.5\text{mBq}$ in the entire inner volume (835kg)
- $^{220}\text{Rn}: \text{220Rn} \rightarrow \text{216Po}(0.14\text{s}) \rightarrow \text{212Pb}$
 - Upper limit $<0.28\text{mBq}$ (90% C.L.)
Background level

- Our BG level (whole volume) after removing Cherenkov events is still ‘low’ even with the unexpected surface backgrounds.
Physics analysis

Analysis with different volumes and thresholds

- Whole Volume Analysis (Large target mass of 835 kg, low energy threshold, (large BG), no reconstruction)
 1) lowest threshold analysis (> 0.3 keVee) (Low mass DM search)
 2) 2keVee threshold annual modulation (e/γ/NR)
 3) keV Axion DM (ex. super-WIMPs) (e/γ)
 4) Solar Axions (e/γ)
 ➔ Light WIMPs & ALP

- Fiducial Volume analysis (low BG)
 1) Standard WIMPs search (> 2~5 keV)
 ➔ Event reconstruction/reduction program
Whole Volume Analysis with lowest threshold

We took data with 4 hits threshold and analyze the events above > 0.3 keVee for entire volume

6.64 days in Feb
- Clean up
- Cut: Cherenkov rejection
 - 40K decay in photo cathodes to create Cherenkov in the window of PMT
 - Most BG in this energy region

Sciellon: ≈0.5, Cherenkov:0.9~1

(# of hits in 20ns window)/(total # of hits) > 0.6

For 7 GeV DM
30% @0.25 keV
> 50% @0.30 keV

12/07/25

Y. Suzuki @IDM2012 in Chicago
• Compare Dark Matter MC to the data
• Obtain the maximum cross section (upper limits) of the spectrum not to exceed the observed data points.
• Current XMASS is close to the allowed regions of DAMA/CoGeNT/CRESST.

We will reduce the backgrounds in near future
Annual modulation (Sensitivity test)

- Use all the available data from commissioning runs: 165 days; divided into 11 periods
- Same event reduction for low energy whole volume analysis
- Energy scale based on 57Co data (±3%)
- Scale factor re-adjustment by 60Co in each periods (0.1 ~ 0.6 %)
- Count number of events
- Check for 2 - 6 keVee DAMA modulation

Good test for electron/γ events (ex. Luminous DM) [not a test for NR]

- χ^2
 - 22.2 for flat
 - 31.6 for ‘DAMA modulation’

Parameters:

A=0.0098 /keV/kg/day
T=365 days, peak=159.2 days
Nuclear Recoil

Test for Nuclear Recoil:

• QF(Na) \sim 0.25, \text{ Leff(Xe)} \sim 0.15
• 2\sim 6\text{keVee}(\text{Na}) \Rightarrow 8\sim 24\text{keV}_{\text{NR}} \Rightarrow 1\sim 4\text{keVee}(\text{Xe})
 – but 1/30 sensitivity \Leftarrow recoil shape, A^2 dependence,....
 – Current XMASS does not have a sensitivity
• χ^2: 10.8 for flat, 23.8 for ‘the DAMA modulation’

1\sim 4\text{keVee}(\text{Xe}) \Leftrightarrow 2\sim 6\text{keVee (Na)}

• 2\sim 6\text{keVee (I)} \Rightarrow 3.5\sim 13\text{ keV keVee(Xe): under study}
DM Axions

- Event Rate for the axion dark matter (through axio-electric effect)
 \[R[kg^{-1}d^{-1}] = 1.2 \times 10^{19} A^{-1} g_{ae}^2 m_a \sigma_{pe} \]
- \(g_{ae} \): strength of the coupling constant, \(m_a \): axion mass in keV, \(\sigma_{pe} \): photo-electric cross section in barns/atom.
DM Axions

• Results show that XMASS have similar sensitivity to the current experiments.
• The fitting the signal with backgrounds above 5 keV, where we know the background very well, will increase the sensitivity by factor of 5 (in future)

![Graph showing axion mass vs. gaee with different experiment results](image)

- DAMA allowed
- XMASS
- CoGeNT 2011
- CDMS 2009

XMASS fitting result > 5 keV (sensitivity study)
Solar Axions

• Production: Various mechanism

 1. Bremsstrahlung and Compton scattering (g_{aee})
 2. Primakoff effect ($g_{a\gamma\gamma}$)
 3. Nuclear de-excitation (57Fe) (g_{aN})
 - Line signal @14.4 keV

• Observation through axio electric effect (g_{aee})
Solar Axions

Bremsstrahlung and Compton scattering (g_{aee})

- Limits from absolute maximum: $g_{aee} = 4.5 \times 10^{-11}$
- Allowed mass for particular models:
 - < 200 eV for KSVZ
 - < 2 eV for DFSZ

12/07/25

Y. Suzuki @IDM2012 in Chicago
Solar Axions

Primakoff: $g_{\gamma\gamma}$ & g_{ee}
- Black body spectrum with ~ 4 keV peak
- $g_{\gamma\gamma}$ & $g_{\text{ee}} < 1.1 \times 10^{-1}$

Nuclear de-excitation: : g_{aN} & g_{ee}
- due to the temperature of the sun low energy excited state is highly populated
- ^{57}Fe is the best candidate of the source of axions.

Non linear energy response causes the shift of the energy of the 14.4 keV signal.
Refurbishment

- PMT Al-seal
 - Difficult to remove
 - Installation of Cu ring around the PMT quartz window

- Place a Cu-cover between PMTs

- Remove GORE-TEX

- Clean up surface

 → 1/100 reduction of BG

- Dis-assemble of the detector has started in July

12/07/25

Y. Suzuki @IDM2012 in Chicago
Time schedule

|----------|----------|----------|----------|----------|

XMASS-I refurbishment

XMASS-I Physics run

XMASS-1.5

5 ton (1 ton fiducial) detector, BG $\sim 10^{-5}$/keV/kg/day

Sensitivity: $s_{\text{Si}} < 10^{-46}$ cm2 (higher mass), $<10^{-42}$ cm2 (low mass DM)

DM Axions, Solar Axions

Design, R&D construction

Physics run

XENON1t

commissioning

12/07/25

Y. Suzuki @IDM2012 in Chicago
Summary

• Around 5 keV region, we have more than 2 orders of magnitude larger BG than originally estimated.
 – They are from PMT Al seal and Cu surface 210Pb.
• Below 5 keV, there may be a contribution from 14C contaminated in GORE-TEX, but not confirmed yet. There may be unknown BGs or something else.
• For the whole volume analysis, we have obtained similar/better sensitivities to/than other current experiments.
 – Low mass dark matter search, Annual variations, Axion dark matter and Solar axions
 – Thanks to the XMASS large total mass, low threshold, sensitivity to the electro-magnetic events as well as nuclear recoils
• Fiducial volume analysis is under evaluation.
• Refurbishment to remove those backgrounds will be done in next several months and we will expect one to two orders of magnitude improvements.
• XMASS 1.5 design work will start soon, hope to start to take data in 2015 (not funded yet).