Recent results from a search for Dark Matter production in the CMS experiment

Jordan Damgov
Texas Tech University
On behalf of the CMS Collaboration
There is strong astrophysical evidence for the existence of dark matter

- Evidence from bullet cluster, gravitational lensing, rotation curves

Direct detection experiments

- Aim to observe recoil of dark matter off nucleus
- Excesses observed by several experiments, not confirmed by others

Need for independent verification from non-astrophysical experiments

- Low mass region not accessible to direct detection experiments
- Limited by threshold effects, energy scale, backgrounds; less sensitive to spin-dependent couplings

Colliders provide alternative, complementary way to search for dark matter
In framework of effective theory, assume DM(χ) is a Dirac fermion and interaction is characterized by *contact interaction*

- Set mass of mediator (M) to very high value

✓ heavy mediator can be integrated out

\[\Lambda = \frac{M}{\sqrt{g_\chi g_q}} \]

- Consider two possibilities:
 a) Vector mediator:
 - Spin dependent
 b) Axial-Vector mediator:
 - Spin independent

Effective operators

\[\mathcal{O}_V = \frac{(\bar{\chi} \gamma_\mu \chi)(\bar{q} \gamma^\mu q)}{\Lambda^2} \]

\[\mathcal{O}_{AV} = \frac{(\bar{\chi} \gamma_\mu \gamma_5 \chi)(\bar{q} \gamma^\mu \gamma_5 q)}{\Lambda^2} \]
Dark Matter production results in missing transverse energy (MET).

Photons (or jets from a gluon) can be radiated from quarks:
- monophoton (or monojet) plus MET.
CMS Detector

Pixels Tracker
- ECAL
- HCAL
- Solenoid
- Steel Yoke
- Muons

SILICON TRACKER
- Pixels (100 x 150 μm²)
 - ~1m² ~66M channels
- Microstrips (80-150μm)
 - ~200m² ~2 BM channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76k scintillating PbWO₄ crystals

PRESHOWER
- Silicon strips
 - ~16m² ~137k channels

STEEL RETURN YOKE
- ~13000 tonnes

SUPERCONDUCTING SOLENOID
- Nobium-titanium coil
 - carrying ~16000 A

HADRON CALORIMETER (HCAL)
- Brass + plastic scintillator
 - ~7k channels

FORWARD CALORIMETER
- Steel + quartz fibres
 - ~2k channels

Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total weight</td>
<td>14000 tonnes</td>
</tr>
<tr>
<td>Overall diameter</td>
<td>15.0 m</td>
</tr>
<tr>
<td>Overall length</td>
<td>28.7 m</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>3.8 T</td>
</tr>
</tbody>
</table>

Muon Chambers
- Barrel: 250 drift tube & 480 resistive plate chambers
- Endcaps: 473 cathode strip & 432 resistive plate chambers
Monophoton- Search Details

- **Require a photon in an event:**
 - High energy photon: $p_T(\gamma) > 145$ GeV/c
 - In the central part of the detector: $|\eta| < 1.442$
 - Veto events with nearby tracks or pixel stubs
 - Veto events with significant electromagnetic calorimeter activity ($\Delta R < 0.4$)
 - Veto events with significant hadronic activity ($\Delta R < 0.4, E_{\text{HCAL}}/E_{\text{ECAL}} < 0.05$)
 - Shower shape consistent with photon: $\sigma_{\text{inh}} < 0.013$
 - All reconstructed vertices are used for isolation calculations.

- **MET > 130 GeV, using a particle flow method**

- **Remove events with excessive activity**
 - No central jet: veto events with $p_T(\text{jet}) > 40$ GeV/c and $|\eta_{\text{jet}}| < 3.0$
 - No tracks with $p_T > 20$ GeV/c
Monophoton- Event Display
Monophoton - Backgrounds

- **Backgrounds estimated from MC and data-driven (DD) techniques**
 - Backgrounds from pp collisions
 - $pp \rightarrow Z \gamma \rightarrow \nu\nu\gamma$: irreducible background (MC)
 - $pp \rightarrow W \rightarrow e\nu$: electron mis-identified as photon (DD)
 - $pp \rightarrow \text{jets} \rightarrow \text{“}\gamma\text{”} + \text{MET}$: one jet mimics photon, MET from jet mis-measurement (DD)
 - $pp \rightarrow \gamma + \text{jet}$: MET from jet mis-measurement (MC)
 - $pp \rightarrow W\gamma \rightarrow l\nu\gamma$: charged lepton escapes detection (MC)
 - $pp \rightarrow \gamma\gamma$: one photon mis-measured to give MET (MC)

- Backgrounds unrelated to pp collisions
 - Showers induced by cosmics: identified and removed (DD)
 - Neutron-induced signals: identified and removed (DD)
 - Beam halo: mostly removed; a residual contribution estimated (DD)

The procedure consists of estimating expected number of events from SM processes (and other backgrounds) and look for excess of events.

➢ Counting Experiment
Background processes describe the data well and no excess is observed.
Signal Generation
- Dark Matter model follows effective theory outlined in earlier slide
- Madgraph4 + Pythia6 generation with 10 TeV mediator mass and assume cross section scales as Λ^{-4}.
- Similar sensitivity to spin-dependent and spin-independent

Acceptance times efficiency for Dark Matter signal
- $A \times \varepsilon \approx 0.3$, for both vector operator and axial-vector operator
- Kinematics mainly from ISR photon; $A \times \varepsilon$ is fairly constant in the range $m_\chi = 1\text{-}1000$ GeV

Systematic uncertainties
- Stats. Uncertainty 1.7%
- Photon PT uncertainty 2.3%
- Jet Energy Scale 1.2%
- MET modeling 0.5%
- Pile-up modeling 2.4%
- Jet veto modeling 10%
Limit-setting
- For an integrated luminosity of 5.0 fb^{-1}: 75.1 ± 9.5 expected and 73 observed
- 90% CL limits shown below, “expected” limits in parenthesis (95% also available)

Extraction of χ-nucleon cross section
- Upper limits on cross sections give lower limits on the scale Λ, assuming a Λ^{-4} behavior
- The lower limits on Λ are then used to calculate the χ-nucleon cross section limits versus DM mass

$$\sigma_{SI} = 9 \frac{\mu^2}{\pi \Lambda^4} \quad \sigma_{SD} = 0.33 \frac{\mu^2}{\pi \Lambda^4} \quad \text{where} \quad \mu = \frac{m_\chi m_p}{m_\chi + m_p}$$

[OBSERVED(EXPECTED) 90% CL upper limits on the DM production cross section σ, and 90% CL lower limits on the cutoff scale Λ for vector and axial-vector operators as a function of the dark matter mass M_χ]
Monophoton - spin-independent limits

χ-Nucleon Cross Section $[\text{cm}^2]$

Spin Independent
- CMS (90%CL)
- CDMS II 2011
- CDF
- CDMS II 2010
- XENON100
- CoGeNT 2011

CMS, $\sqrt{s} = 7$ TeV

5.0 fb$^{-1}$

M_χ [GeV]

[CDMS II: Science 327 (2010) 1619]
Monophoton - spin-dependent limits

CMS, $\sqrt{s} = 7$ TeV
5.0 fb$^{-1}$

χ-Nucleon Cross Section [cm2]

M_χ [GeV]

Spin Dependent
- CMS (90% CL)
- CDF
- IceCube ($\chi\chi \rightarrow W^+W^-$)
- Super-K I+II+III ($\chi\chi \rightarrow W^+W^-$)

[CDMS II: Science 327 (2010) 1619]
Monojet - search details

- Select sample of Monojet+MET events (keeping muons)
 - Basic cuts on jet constituents - charged and neutral HAD and EM fractions
 - Removes cosmics, instrumental backgrounds, mis-measured jets

- Basic topological selection
 - MET > 200 GeV, number of Jets = 1 or 2
 - Particle flow jets; anti-k_T with R = 0.5
 - Leading Jet: p_T > 110 GeV, |η|<2.4
 - Second Jet: p_T > 30 GeV
 - Δφ(jet1,jet2) < 2.5

• Monojet Signal Sample (Lepton Rejection)
 - Reject events with e, μ isolated in a cone of ΔR = 0.3
 - Reject events with tracks isolated in a cone of ΔR = 0.3
 - MET > 350 GeV for DM search

• Data-driven Background Estimation (Lepton Identification)
 - Isolated muon > 20 GeV/c
 - Obtain Z+jet sample from M(μμ), W+jet sample from pT(μ)+MET
Monojet – event display
Monojet - basic selection

- Basic topological selection
 - MET > 200 GeV, number of Jets = 1 or 2
 - Leading Jet: $p_T > 110$ GeV, $|\eta| < 2.4$
 - Second Jet: $p_T > 30$ GeV
 - $\Delta \phi(\text{jet1, jet2}) < 2.5$

QCD rejection accomplished by topological cuts
Final monojet signal sample obtained by
- Rejecting events with isolated e, μ
- Rejecting events with isolated tracks

Good agreement for full MET range
- Sensitivity to new physics (DM, ADD) in the tails

Optimize search for best expected sensitivity to new physics:
- MET > 350 GeV for DM search

Search high MET events for DM
Monojet - analysis cut flow

- Primary backgrounds normalized to data-driven estimation
- Remaining backgrounds after full event selection are: $Z(vv)$ ($\approx 70\%$), $W+$jets ($\approx 30\%$),
- Other backgrounds from QCD, top, $Z+$jets negligible ($\approx 1\%$) - estimated from MC

<table>
<thead>
<tr>
<th>E_T^{miss} (GeV/c)</th>
<th>≥ 250</th>
<th>≥ 300</th>
<th>≥ 350</th>
<th>≥ 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Events</td>
<td>Events</td>
<td>Events</td>
<td>Events</td>
</tr>
<tr>
<td>$Z(v\bar{v})+$jets</td>
<td>5106 ± 271</td>
<td>1908 ± 143</td>
<td>900 ± 94</td>
<td>433 ± 62</td>
</tr>
<tr>
<td>$W+$jets</td>
<td>2632 ± 237</td>
<td>816 ± 83</td>
<td>312 ± 35</td>
<td>135 ± 17</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>69.8 ± 69.8</td>
<td>22.6 ± 22.6</td>
<td>8.5 ± 8.5</td>
<td>3.0 ± 3.0</td>
</tr>
<tr>
<td>$Z(\ell\ell)+$jets</td>
<td>22.3 ± 22.3</td>
<td>6.1 ± 6.1</td>
<td>2.0 ± 2.0</td>
<td>0.6 ± 0.6</td>
</tr>
<tr>
<td>Single t</td>
<td>10.2 ± 10.2</td>
<td>2.7 ± 2.7</td>
<td>1.1 ± 1.1</td>
<td>0.4 ± 0.4</td>
</tr>
<tr>
<td>QCD Multijets</td>
<td>2.2 ± 2.2</td>
<td>1.3 ± 1.3</td>
<td>1.3 ± 1.3</td>
<td>1.3 ± 1.3</td>
</tr>
<tr>
<td>Total SM</td>
<td>7842 ± 367</td>
<td>2757 ± 167</td>
<td>1225 ± 101</td>
<td>573 ± 65</td>
</tr>
<tr>
<td>Data</td>
<td>7584</td>
<td>2774</td>
<td>1142</td>
<td>522</td>
</tr>
</tbody>
</table>
Data-driven estimation of Z+jets \rightarrow $\mu\mu$+jets
- Z+jets \rightarrow $\mu\mu$+jets control sample derived directly from monojet data sample
- Require two muons passing selection
- Invariant mass 60-120 GeV, opposite sign
- Uncertainty in method is 10.4% mainly from stats (9.5%)

Similar for W+jets \rightarrow vl+jets, where lepton is “lost”
- Lepton lost if outside detector acceptance or not reconstructed/isolated
- Require single lepton and M_T between 50-100 GeV
- Primary uncertainties from uncertainties on acceptance (7.7 %) and selection efficiency (6.8 %)
- Total uncertainty in method is 11.3%

Data-driven measure of main backgrounds
Monojet - Dark Matter Signal

- Monojet Signal Generation
 - Madgraph5 + Pythia6 generation with 40 TeV mediator mass
- Systematic uncertainties ≤15%, main contributions from
 - Jet Energy Scale
 - PDF (PDF4LHC)
 - Jet Energy Resolution
 - Luminosity
- Final numbers for MET > 350 GeV: 1225 ± 101 background, 1142 data

<table>
<thead>
<tr>
<th>M_X (GeV/c²)</th>
<th>Spin-dependent Λ (GeV)</th>
<th>σ_{XN} (cm²)</th>
<th>Spin-independent Λ (GeV)</th>
<th>σ_{XN} (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>754</td>
<td>1.03×10^{-42}</td>
<td>749</td>
<td>2.90×10^{-41}</td>
</tr>
<tr>
<td>1</td>
<td>755</td>
<td>2.94×10^{-41}</td>
<td>751</td>
<td>8.21×10^{-40}</td>
</tr>
<tr>
<td>10</td>
<td>765</td>
<td>8.79×10^{-41}</td>
<td>760</td>
<td>2.47×10^{-39}</td>
</tr>
<tr>
<td>100</td>
<td>736</td>
<td>1.21×10^{-40}</td>
<td>764</td>
<td>2.83×10^{-39}</td>
</tr>
<tr>
<td>200</td>
<td>677</td>
<td>1.70×10^{-40}</td>
<td>736</td>
<td>3.31×10^{-39}</td>
</tr>
<tr>
<td>300</td>
<td>602</td>
<td>2.73×10^{-40}</td>
<td>690</td>
<td>4.30×10^{-39}</td>
</tr>
<tr>
<td>400</td>
<td>524</td>
<td>4.74×10^{-40}</td>
<td>631</td>
<td>6.15×10^{-39}</td>
</tr>
<tr>
<td>700</td>
<td>341</td>
<td>2.65×10^{-39}</td>
<td>455</td>
<td>2.28×10^{-38}</td>
</tr>
<tr>
<td>1000</td>
<td>206</td>
<td>1.98×10^{-38}</td>
<td>302</td>
<td>1.18×10^{-37}</td>
</tr>
</tbody>
</table>
Dark Matter spin-independent limits

Best limits for low mass DM, below 3.5 GeV, a region as yet unexplored by direct detection experiments
Limits represent the most stringent constraints by several orders of magnitude over entire 0.1-200 GeV mass range
Summary

- Presented searches for new physics in monojet and monophoton channels using 5.0 fb⁻¹ of data.

- Predictions for SM background consistent with observed data, *no excess* found. Limits are set on Dark Matter production, resulting in a significant extension of previously excluded parameter space:

 - For spin-independent models, best limits for low mass DM, below 3.5 GeV, a region as yet unexplored by the direct-detection experiments.

 - For spin-dependent models, limits represent the most stringent constraints by several orders of magnitude over entire 0.1-200 GeV mass range studied.

References: EXO-11-059 (monojet) and EXO-11-096 (monophoton) at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
Thank you!