Recent constraints on axion-photon and axion-electron coupling with CAST

9th International Conference: Identification of Dark Matter
Chicago, IL. 24nd of July 2012

J. Ruz, on behalf of the CAST Collaboration
Outlook

- Axion motivation
- Detection of solar axions
 - The helioscope concept
 - The coherence condition
- Axion models
- Hadronic axions at CAST
 - Axion flux
 - Results
- Non-hadronic axions at CAST
 - Axion flux
 - Expected photons
 - Analysis method
 - Extraction of a limit
 - Results
- Near term future at CAST
The strong CP problem

This term is CP violating. But no experiment has yet observed CP violation in strong interactions.

In particular, this term predicts an electric dipole moment of the neutron with magnitude:

\[|d_n| = A|\theta| \times 10^{-15} e \times cm \]

(A = 0.04 – 2.0)
Axion motivation (2)

- The strong CP problem

But experiments say ...

\[|d_n| < 2.9 \times 10^{-26} \text{ ecm} \]

Which leads to

\[|\theta| < 0.7 \times 10^{-11} \]

- Why is \(\theta \) so small?
- A high degree of fine-tuning of two different contributions is required

Peccei-Quinn (1977) propose an elegant solution to this problem: \(\theta \) is no longer a constant, but a field \(\rightarrow \) the axion \(a(x) \).

Fine-tuning now results in a natural, dynamic fashion.
Axion motivation (3)

- The PQ scenario solves the strong CP-problem. And a natural by-product of this solution is the appearance of a new particle, the axion.

- **Basic properties:**
 - Pseudoscalar particle
 - Neutral
 - Very light (but not massless).
 - Stable (for practical purposes).
 - Phenomenology driven by the PQ scale f_a.

\[
L_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{8\pi f_a} aG\tilde{G}
\]
Axion motivation (4)

- **Axions could be produced** in the early Universe by a number of processes:
 - Axion realignment
 - Decay of axion strings
 - Decay of axion walls

\[
\begin{align*}
&\text{NON-RELATIVISTIC} \\
&\text{(COLD) AXIONS} \\
&\text{Cold Dark Matter} \\
&\text{(CDM) candidate} \\
\end{align*}
\]

\[
\begin{align*}
&\text{RELATIVISTIC} \\
&\text{(HOT) AXIONS} \\
&\text{Hot Dark Matter} \\
&\text{(HDM) candidate} \\
\end{align*}
\]

- Thermal production

Axion motivation

- **Laboratory axions**
 - Shining-Light-through-Walls (OSQAR, LIPSS, ALPS)
 - Polarization (PVLAS)

- **Solar axions**
 - Crystals (SOLAX, COSME)
 - Helioscopes (Tokyo, CAST)

- **Halo axions** (relics of Big Bang)
 - Haloscopes (ADMX, Carrack)
 - Telescopes (Haystack)
Axion motivation

- **Laboratory axions**
 - Shining-Light-through-Walls (OSQAR, LIPSS, ALPS)
 - Polarization (PVLAS)
- **Solar axions**
 - Crystals (SOLAX, COSME)
 - Helioscopes (Tokyo, CAST)
- **Halo axions** (relics of Big Bang)
 - Haloscopes (ADMX, Carrack)
 - Telescopes (Haystack)

Diagram showing the axion detection methods and their respective energy ranges. The methods include:

- Shining-Light-through-Walls (OSQAR, LIPSS, ALPS)
- Polarization (PVLAS)
- Crystals (SOLAX, COSME)
- Helioscopes (Tokyo, CAST)
- Haloscopes (ADMX, Carrack)
- Telescopes (Haystack)

The diagram also highlights the CDM "classical window" and CDM defects dominate, with references to hep-ph/1202-5851.
Axions in astrophysics

- **Axions can be produced in the core of stars, like the Sun, by Primakoff conversion of plasma photons.**
 - Axions drain energy from stars and may alter their lifetime.
 - Limits can be derived for axion properties:
 - Solar Age: $g_{a\gamma} \leq 3 \times 10^{-9} \text{GeV}^{-1}$
 - Helioseismology: $g_{a\gamma} \leq 1 \times 10^{-9} \text{GeV}^{-1}$
 - Neutrino flux: $g_{a\gamma} \leq 7 \times 10^{-10} \text{GeV}^{-1}$
 - Horizontal branch stars: $g_{a\gamma} \leq 1 \times 10^{-10} \text{GeV}^{-1}$
 - SN 1987A

- **Axion decay** may produce γ-ray emission lines originating from certain places (e.g., galactic center).

Axions in astrophysics

- **Axions may have a wider impact:**
 - The cooling of white dwarfs
 - Luminosity function (WD’s per unit magnitude) altered by axion cooling
 - Claim of detection of new cooling mechanism (Isern 2008)
 - Axion-electron coupling of \(\sim 1 \times 10^{-13} \) (\(\rightarrow \) axion masses of 2-5 meV or larger) **fits data.**
Axion phenomenology

- Axion-photon conversion in the presence of an electromagnetic field (Primakoff effect)

This EM field can be
- an artificial magnetic field
- the Coulomb field of the plasma in the core of a star
- the periodic E field of a crystalline structure
- ...
Detection of solar axions

- The Helioscope concept

Axions created in the solar core travel towards Earth where by means of an intensive electromagnetic field they can be converted to photons via Primakoff effect.

The interaction of an axion converting to a photon via Primakoff effect in the presence of magnetic fields is the proposed detection mechanism.
Detection of solar axions

The coherence condition

The axion mass band for which a Primakoff based experiment is sensitive can be extracted from the coherence condition.

The converted photons may acquire an effective mass in the presence of gas extending the axion mass sensitivity range of an experiment that has a fixed magnet length.

Conversion Probability

\[P_{\text{ax}} = g_0^2 \times \left(\frac{B}{2} \right)^2 \frac{1}{q^2 + \Gamma^2} \left[1 + e^{-\frac{qL}{2}} - 2e^{-\frac{\sqrt{2}}{2} \cos qL} \right] \]

Coherence Condition

\[\left(\frac{m_a}{\text{keV}} \right)^2 \ll \left(\frac{m_i}{\text{keV}} \right)^2 + \left(\frac{E_0}{\text{keV}} \right) + 2 \left(\frac{E_0}{L \cdot \text{keV}} \right) \]

Axion-to-photon conversion in the presence of a nearly homogeneous magnetic field \(B \) is only effective when the polarization plane is parallel to the incident particle.
CAST experiment @ CERN

- Decommissioned LHC test magnet (L=10 m, B=9 T)
- Moving platform ±8°V, ±40°H (allows 3 hours/day of solar tracking)
- 4 magnet bores to look for x-rays from axion conversion
- X-ray focusing system to increase signal/background ratio
Axion models

- **Axion decay constant**
 - The axion mass and the scale of the interaction are closely related

 \[m_a = \frac{m_u + m_d}{\sqrt{m_u m_d}} \frac{m_\pi f_\pi}{f_a} = 6 \text{meV} \frac{10^9 \text{GeV}}{f_a} \]

 \[z = 0.56 \]

 \[z = \frac{m_u}{m_d} \subseteq [0.35, 0.6] \]

- The nature of axion implies they must interact with hadrons and photons
 - **Hadronic axion models**
 - GUT motivated axion models suggest that axions can also significantly interact with leptons
 - **Non-hadronic axion models**
Hadronic axions at CAST

- Primakoff production of axions in the Sun

\[\mathcal{L}_{\gamma\gamma} = - \frac{C_\gamma \alpha}{8\pi f_a} F_{\mu\nu} \widetilde{F}^{\mu\nu} a = -\frac{g_{\gamma\gamma}}{4} F_{\mu\nu} \widetilde{F}^{\mu\nu} a \]

- No significant signal observed
- Typical upper limit
- Touching KSVZ benchmark
Hadroninc axions from the Sun

- To date, interpretation of solar axion experimental results has looked at photon-axion coupling: hadronic models

 - Vacuum Phase
 \[m_a \leq 0.02 \text{ eV} \]
 Phys.Rev.Lett.94:121301, 2005
 JCAP 04 (2007) 010

 - \(^4\text{He}\) Phase
 \[0.02 \text{ eV} \leq m_a \leq 0.39 \text{ eV} \]
 JCAP 02 (2009) 008

 - First Results from \(^3\text{He}\) Phase
 \[0.39 \text{ eV} \leq m_a \leq 0.65 \text{ eV} \]

 - Preliminary analysis of rest \(^3\text{He}\) Phase
 \[0.65 \text{ eV} \leq m_a \leq 1.18 \text{ eV} \]

But we know that other processes might be at play ...
Non-hadronic axions at CAST

- Primakoff and electron production of axions in the Sun

\[g_{\gamma} = 1 \times 10^{-12}\text{GeV}^{-1} \]
\[g_{ae} = 1 \times 10^{-13} \]

Special thanks to J. Redondo and G. Raffelt

Axion-recombination subdominant

Work in progress

- No significant signal observed
- White Dwarf compatible?

\[\mathcal{L}_{\gamma\gamma} = - \frac{C_\gamma \alpha}{8\pi f_a} F_{\mu\nu} \tilde{F}^{\mu\nu} a = - \frac{g_{\gamma}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} a \]

\[\mathcal{L}_{ae} = C_e \frac{\partial \mu a}{2f_a} \bar{\psi}_e \gamma^5 \gamma^\mu \psi_e \quad \rightarrow \quad g_{ae} = \frac{C_e m_e}{f_a} \]
Non-hadronic axions at CAST

- **Extraction of a limit**, a generic limit can be expressed as

\[C_e C_\gamma = g_{ae} g_{ay} \frac{2\pi}{\alpha} \frac{1}{m_e} \left[\frac{6\text{meV} \cdot 10^9 \text{GeV}}{m_a} \right]^2 \]

\[C_e C_\gamma < \frac{1}{4} \]

DFSZ Models

Model dependent parameter

\[C_\gamma \sqrt{\frac{E}{N}} = \frac{2(4m_d + m_u)}{3(m_u + m_d)} \approx \frac{E}{N} - 1.92 \]

Electromagnetic and color anomalies ratio
Near term future at CAST

- **Current CAST science program** approved by CERN, runs through 2014
- **Schedule for the near future**
 - Re-visit \(^4\)He phase (2012) and vacuum phase (2013-14):
 - Better detectors \(\rightarrow\) higher sensitivity
 - New optics \(\rightarrow\) increased discovery potential
 - Improve present limits
 - Study axion-electron coupling \(g_{ae}\)
 Direct access to DFSZ models
 - **Possible access to:**
 - Exotica
 - Paraphotons, chameleons, low energy axions
 - Relic axions

- **Improvement for CAST**

 Large parts of the QCD favored models could be explored in the coming decade with IAXO

See Julia’s talk
Near term future at CAST

- Re-visit 4He phase (ongoing)
- Re-visit vacuum phase (2013-14)
 - Better detectors, new optics \rightarrow higher sensitivity and increased discovery potential (red line)
 - Probing standard KSVZ model (green line)
Conclusions

- CAST is a establish reference in axion physics:
 - PRL94:121301, 2005 is the most cited experimental axion paper
 - First experiment to probe a large area of the QCD axion favored models
 - First helioscope to set limits on the axion-electron coupling
 - Limits the existence of a HOT dark matter axion

- Helioscopes are sensitive not only to axions but to any axion-like particle
Thank you!
Backup slides
Non-hadronic axions at CAST

- **The CCD Detector of CAST**
 - Energy range [0.8-6.8] keV with ΔE=0.3 keV
 - Vacuum data of First Phase 2004
 - Tracking exposure: 197 hours
 - Background exposure: 1890 hours
 - Efficiency included
 - 1 bore
 - Spot size: 9.4 mm²

CCD data 2004
- Blue: tracking counts
- Red: background expectation
Detection at CAST

- **Axion flux:**

\[
\left(\frac{d\phi_a}{dE_a} \right)_T = \left(\frac{d\phi_a}{dE_a} \right)_C + \left(\frac{d\phi_a}{dE_a} \right)_B + \left(\frac{d\phi_a}{dE_a} \right)_P = g_{ae}^2 \cdot C + g_{ae}^2 \cdot B + g_{a\gamma}^2 \cdot P
\]

- **Expected photons:**

\[
N_\gamma \propto g_{ae}^2 \cdot g_{a\gamma}^2 \times H(C + B) + g_{a\gamma}^4 \times (H \cdot P)
\]

- In the non-hadronic models the contribution from electron coupling is \(\sim 900\) times stronger than the Primakoff in the Sun this term can be neglected.

\[
N_\gamma \propto g_{ae}^2 \cdot g_{a\gamma}^2 \times H(C + B)
\]
Analysis method
Binned likelihood

- Poissonian distribution:

\[
L = \prod_{j} \left(\frac{e^{-\lambda_j} \lambda_j^{t_j}}{t_j!} \right) \left(\frac{t_j!}{e^{-t_j} t_j^{t_j}} \right)
\]

\[
\lambda_j \propto g_{ae} \cdot g_{a\gamma} \times H(C + B) + b_j
\]

\[
-\frac{1}{2} \chi^2 = \log \left[\prod_{j} e^{-\lambda_j + t_j} \left(\frac{\lambda_j}{t_j} \right)^{t_j} \right] = \sum_{j} (t_j - \lambda_j) + \sum_{j} t_j (\log \lambda_j - \log t_j)
\]

\(j = \text{bin index}\)
\(\lambda_j = \text{mean } j_\text{bin}\)
\(t_j = \text{tracking counts } j_\text{bin}\)
\(b_j = \text{background counts } j_\text{bin}\)
Analysis method
Unbinned likelihood

- **Poissonian distribution:**
 - Dividing the total exposure in small k-time intervals so that only one or zero counts can be observed in the detector

\[
L = \prod_{k}^{t} L_k = \prod_{k}^{t} [L_k(t_i = 0) \times L_k(t_i = 1)] = \prod_{k}^{t} \prod_{j}^{n} e^{-\lambda_j + t_j} \left(\frac{\lambda_j}{t_j} \right)^{t_j}
\]

- \(\lambda_j \propto g_{ae}^2 \cdot g_{ay}^2 \times H(C + B) + b_j \)

- \(- \frac{1}{2} \chi_T^2 = \sum_{k}^{t} \left[- \frac{1}{2} \chi_{k0}^2 - \frac{1}{2} \chi_{k1}^2 \right] = \sum_{k}^{t} \left[- \sum_{j}^{n} \lambda_j + \sum_{j}^{n} (1 - \lambda_j) + \sum_{j}^{n} t_j \log \lambda_j \right] \)

- k = time interval
- j = bin index
- \(\lambda_j \) = mean j_bin
- \(t_j \) = tracking counts j_bin
- \(b_j \) = background counts j_bin
Large parts of the QCD favored models could be explored in the coming decade with IAXO.

See Julia’s talk.