SuperCDMS-SNOLAB: an active neutron veto shield design

Silvia Scorza
Southern Methodist University
SuperCDMS collaboration
Dark Matter Search
Goal: direct detection of WIMP elastic scattering off nuclei few WIMPS/year/ton
Signature: nuclear recoil with E<100 KeV

Shielding (Pb, polyethylene, Cu)
Reduce backgrounds from radioactivity

Active Background Rejection
Distinguish between nuclear recoils (WIMPS, neutrons) and electron recoils (backgrounds) -> by recording both ionization and heat (phonon) signals
Surface events tag -> interdigitized electrode scheme – phonon sensor

Deep Underground (SNOLAB)
Fewer cosmic rays to produce neutrons
Neutrons produce nuclear recoils

SuperCDMS

DETECTOR

SHIELDING

α, β, γ, n

U/Th/K

μ

μ

n

ROCK

ROCK
Depth is Important!

Moving from Soudan to SNOLab:

Reduce muon flux by $500\times$

Reduce high-energy neutron flux by $100\times$

Worry about neutrons from residual radioactivity only
Which Neutrons?

- **Cosmogenic** muon-induced: expect <0.1 in 100kg- years @SNOLab

- **External radiogenics** (Fission and \((\alpha, n)\) from U,Th in cavern rock): expected to be negligible with passive shielding

- **Internal radiogenics** (Fission and \((\alpha, n)\) from U,Th in Cu cans and supports): expect order of 1 in 100 kg – depending on screening and material cleanliness

- Identification background events especially neutrons that can produce nuclear recoils similar to WIMPS.
- The veto will indirectly act as a diagnostic device.
Neutron veto - how to

- n capture in the veto
- fast scatters in the veto
- gamma from captures outside the veto

WIMP search strategy

Any WIMP candidate in coincidence with a veto energy deposited of the n-capture process will be rejected
Physics Requirements

- Total unvetoed background in Ge <<1 counts in 100kg SNOlab phase

- Total background rate (neutron & gamma) must be the same: neutron veto must not generate excessive backgrounds in the zips
 \[\Rightarrow\] Implies radioclean construction

- Negligible contribution to dead-time
 \[\Rightarrow\] Implies low (<kHz) non-coincident trigger rate

- High (~90% or better) efficiency
 (a modest efficiency of ~80% would reduce neutron background to <1 event)
Neutron Flux Monitor

Additional requirement:
good ability to discriminate neutrons from the gamma background

- *In situ* measurement of radiogenic neutron rates – better precision than the multiple scattering measurement

- Evaluation of Monte Carlo systematics

- Monitoring/tuning of Ge nuclear recoil acceptance using tagged neutrons
Dimensions:
13 feet diameter
14 feet height

Current Design

Dimensions: 13 feet diameter 14 feet height

DILUTION FRIDGE

CRYOCOOLER

EBOX

WATER Shielding closing LIQUID SCINTILLATOR TANK

7/24/12
Silvia Scorza - IDM 2012
LEAD

LEAD

WATER/POLY SHIELDING

LIQUID SCINTILLATOR MODULES

PMTs

POLY planks

WATER/POLY SHIELDING
Neutron veto modules filled with Linear Alkylbenzene (LAB), read out by PMTs

Doped with high cross-section isotopes (B, Gd, Li)
- decreases capture time/distance (ex. 5% Boron doping reduces capture time from 250 \(\mu \text{s} \) to 3 \(\mu \text{s} \))
- affects design due to need to contain+detect capture products
LAB Doping

Boron

- \rightarrow **ALPHA** (~3 MeV) + **GAMMA** (500keV)
- \rightarrow observed light may be as low as 50keVee

Challenges:
- ✓ minimize environmental radioactivity by:
 - constructing the detector out of radiopure materials,
 - developing a clean boron-loaded scintillator,
 - utilizing adequate shielding for the neutron veto.
- ✓ energy threshold

Gadolinium

- \rightarrow **GAMMA** cascade 8MeV
 - ($>^{208}\text{Ti}$ line ~2.7MeV)

- Reduction outer shielding
- It has been demonstrated by Daya Bay experiment

BUT
- decreased efficiency for detecting internal neutrons
- possible introduction of radio contaminant (Gd is less pure than B)
Efficiency

Veto efficiency vs threshold for 100μs veto times for recoil events.

Recoil events: passing the energy deposition criteria (10 -100keV) and >10% of the deposited energy must have come via recoils.

LAB Gd doped shows higher efficiency than LAB B doped.
- Scintillator and optical test starting soon
- Final design by 2014
- SuperCDMS SNOLab construction 2014
CDMS/SuperCDMS Collaborations

Caltech
Instituto de Fisica Teorica, Universidad Autonoma de Madrid Fermilab
MIT
NIST
Queens University
Santa Clara University
SLAC/KIPAC
Southern Methodist University
Stanford University
Syracuse University
University of British Columbia
University of California, Berkeley
University of California, Santa Barbara
University of Colorado, Denver
University of Florida
University of Minnesota
University of Texas A&M