COUPP500: a 500kg Bubble Chamber for Dark Matter Detection

Eric Vázquez Jáuregui
SNOLAB

Identification of Dark Matter 2012
Chicago IL, USA; July 26, 2012
The COUPP collaboration

- KICP - University of Chicago
 Juan Collar (PI, spokesperson),
 R. Neilson, Alan E. Robinson

- Indiana University South Bend
 E. Behnke, T. Benjamin, Emily Grace,
 C. Harnish, I. Levine, T. Nania

- Fermi National Accelerator Laboratory
 Steve J. Brice, Dan Broemmelsiek,
 Peter S. Cooper, Mike Crisler, Jeter Hall,
 W. Hugh Lippincott, Erik Ramberg,
 Andrew Sonnenschein, Fermilab Engineers and Technicians

- Northwestern University
 C. Eric Dahl

- Politecnica Valencia
 M. Ardid, M. Bou-Cabo

- SNOLAB
 Eric Vázquez-Jáuregui

- Virginia Tech
 D. Maurya, S. Priya
COUPP bubble chambers

- Target material: superheated CF_3I spin-dependent/independent
- Particles interacting evaporate a small amount of material: bubble nucleation
- Cameras record bubbles
- Piezo sensors detect sound
- Recompression after each event
COUPP bubble chambers

- The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector
COUPP bubble chambers

- The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector.
- The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles.
COUPP bubble chambers

- The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector.
- The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles.
- The ability to build large chambers cheaply and with a choice of target fluids.
COUPP bubble chambers

- The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector
- The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles
- The ability to build large chambers cheaply and with a choice of target fluids
- The ability to increase the size of the chambers without changing the size or complexity of the data acquisition
COUPP bubble chambers

- The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector.
- The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles.
- The ability to build large chambers cheaply and with a choice of target fluids.
- The ability to increase the size of the chambers without changing the size or complexity of the data acquisition.
- Sensitivity to spin-dependent and spin-independent WIMP couplings.
COUPP-4kg and COUPP-60kg

- Running at SNOLAB since 2010
- World leading spin dependent limits

 (Michael B. Crisler talk)

- Engineering run at Fermilab in 2011
- Moving to SNOLAB
- Physics run in late 2012

 (Andrew Sonnenschein talk)
COUPP at SNOLAB

SNOLAB

deepest and cleanest large-space international facility in the world

• 2 km underground near Sudbury, Ontario

• ultra-low radioactivity background environment Class 2000

• Physics programme focused on neutrino physics and direct dark matter searches
Calibrations

• γ and neutron calibrations
 – AmBe and 252Cf
 – 60Co and 133Ba

• COUPP Iodine Recoil Threshold Experiment

• Low energy Iodine recoils

• π beam and silicon trackers
 (Hugh Lippincott talk)

• 88Y/Be calibration chamber

• Monochromatic low energy neutrons
 (Alan E. Robinson talk)
- A tonne scale detector
- Spin-independent sensitivity $9 \times 10^{-47} cm^2$, background-free year running
- Beyond next generation (G2) device
- <9M total cost (R&D funded by NSF, waiting on DOE)
- Possible to use alternative fluids (C_4F_{10})

R&D phase
COUPP-500kg design

- **Target fluid:** CF$_3$I
 - C_4F_{10} at 15keV:
 - SI rate $\times 17 \downarrow$
 - (WIMP mass \sim100 GeV)
 - C_4F_{10} at 15(10)keV:
 - SD rate $\times 4(18) \uparrow$
 - (WIMP mass \sim10 GeV)

- **Inner vessel assembly:**
 ultra-high-purity synthetic fused silica jar

- **Outer vessel:**
 Stainless steel ($\phi = 60$ inches)

- **Acoustics sensors:**
 piezoelectric acoustic transducers
COUPP-500kg design

- **Outer neutron shielding:**
 - neutron moderator
 - muon veto
 - temperature control

- **Pressure control unit:**
 - expand and recompress the chamber
 - regulate chamber pressure

- **Data acquisition:**
 - T and P sensors
 - machine vision cameras
 - acoustic transducers
R&D and calibrations

- Calibration of low energy nuclear recoil response
 - CIRTE, 88Y-Be, ...

- Calibration of gamma rejection

- In-situ source for alpha calibration

- Bubble acoustics and acoustic sensors

- Extensive background simulation!
COUPP-500kg simulations

- **External backgrounds:**
 - Rock neutrons
 - Muon induced neutrons
 - (γ,n) reactions

- **Internal backgrounds:**
 - U and Th: fission and (α,n)
 on light elements
 - 238U direct decay
 - *Materials: SS, quartz,...
 - *Fluids: water, glycol, CF$_3$I
 - *Radon
 - *Mine dust
 - *veto PMTs
 - *Acoustic transducers

GEANT4 model
COUPP-500kg: external neutrons

Fast neutrons from norite:
4000 n/m²/day

Muon induced neutrons in:
rock, water, stainless steel

Water tank dimensions:

- $\phi = 6.8$ m
- $L = 7.4$ m

~ 67 muons/day

Neutron energy for (α, n) reaction in norite

Eric Vázquez-Jáuregui
IDM 2012
July 26, 2012
COUPP-500kg: fission and (α,n)

Stainless steel, quartz
Water (buffer and tank), propylene glycol

- ^{238}U, ^{232}Th, ^{235}U

Other backgrounds:
- Mine dust
- veto PMTs
COUPP-500kg: gammas, betas and (γ,n) reactions

Gamma and beta decays:

Interact by Compton scattering, photoelectric absorption, and pair production

Rejection factor:
\[\sim 10^{-10} - 10^{-12} \]

COUPP-4kg at SNOLAB measured:
\[< 3 \times 10^{-11} \text{ at } 15 \text{ keV} \]

COUPP-500kg expected:
\[10^{-6} \text{ events/kg-day} \]

(γ,n) reactions:

\[1^{27}\text{I}(\gamma,n)^{126}\text{I}: \]
\[4 \times 10^{-8} \text{ events/kg-day} \]

SNOLAB: \[4 \gamma/\text{cm}^2/\text{yr} > 9\text{MeV} \]

Other reactions:
\[< 7 \times 10^{-10} \text{ events/kg-day} \]
COUPP-500kg: acoustic transducers

Two positions simulated:

$$10 \text{ ppb } ^{238}\text{U and } ^{232}\text{Th}$$
$$0.1 \text{ ppb } ^{235}\text{U, 10 Bq/kg } ^{210}\text{Pb}$$

- side only, 25g
 $$2 \times 10^{-8} \text{ events/kg-day}$$
- bottom only, 25g
 $$3 \times 10^{-7} \text{ events/kg-day}$$

Acoustic simulation in progress for design optimization

screening for salts used in the manufacture of piezoelectric transducers around 15 samples (high purity germanium detector at SNOLAB)
COUPP-500kg: CF$_3$I purity

α decays and neutrons from (α,n):

- 0.0159 ppt 238U
- 0.0488 ppt 232Th
- 0.0025 ppt 235U
- 25 μBq/kg 222Rn
- 25 μBq/kg 210Pb

6×10^{-6} events/kg-day

vetoable: alpha + neutron

COUPP-500kg: radon

Radon deposition and emanation on all surfaces

Radon diffusion in all fluids
Background Summary

<table>
<thead>
<tr>
<th>Neutron source</th>
<th>Rate</th>
<th>Single evts/yr</th>
<th>Multiple evts/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>$4000 \pm 1000 \text{ n/m}^2/\text{d}$</td>
<td>$O(10^{-11})$</td>
<td>$O(10^{-11})$</td>
</tr>
<tr>
<td>Muon induced from rock</td>
<td>$5.4 \times 10^{-11} \text{ n/cm}^2/\text{s}$</td>
<td>0.0904 ± 0.0131</td>
<td>0.2544 ± 0.0219</td>
</tr>
<tr>
<td>Muon induced from shield or detector</td>
<td>$67.11 \pm 1.85 \text{ \mu/d}$</td>
<td>0.493 ± 0.014</td>
<td>1.050 ± 0.030</td>
</tr>
<tr>
<td>U and Th in detector materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>steel only</td>
<td>$1 \text{ppb } ^{238}\text{U and } ^{232}\text{Th}$</td>
<td>0.0504 ± 0.0030</td>
<td>0.1242 ± 0.0068</td>
</tr>
<tr>
<td>quartz only</td>
<td>$10^{-2} \text{ppb } ^{238}\text{U and } ^{232}\text{Th}$</td>
<td>0.0360 ± 0.0026</td>
<td>0.0922 ± 0.0062</td>
</tr>
<tr>
<td>Radon deposition onto and diffusion into outer surface of quartz jar</td>
<td>Dep. Rate $= 10^{-3}/\text{m/y}$</td>
<td>0.0198 ± 0.0015</td>
<td>0.0415 ± 0.0030</td>
</tr>
<tr>
<td>Radon in water tank</td>
<td>$S=0.25, 100 \text{ Bq/m}^3 \text{Rn}$</td>
<td>$(1.83 \pm 0.28) \times 10^{-3}$</td>
<td>$(5.17 \pm 0.60) \times 10^{-3}$</td>
</tr>
<tr>
<td>Radon in heat exchange pipes</td>
<td>$S=0.25$</td>
<td>0.0230 ± 0.0021</td>
<td>0.0572 ± 0.0052</td>
</tr>
<tr>
<td>Radon emanation from quartz and steel</td>
<td>$A=34.81 \text{m}^2/100 \text{ \mu Bq/m}^2 \text{Rn}$</td>
<td>$(1.39 \pm 0.13) \times 10^{-3}$</td>
<td>$(2.93 \pm 0.26) \times 10^{-3}$</td>
</tr>
</tbody>
</table>
Background Summary

<table>
<thead>
<tr>
<th>Neutron source</th>
<th>Rate</th>
<th>Single evts/yr</th>
<th>Multiple evts/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine dust on top surfaces</td>
<td>0.01 g/m², 2.21 m² 1.11 ppm 238U 5.56 ppm 232Th</td>
<td>0.0127 ± 0.0011</td>
<td>0.0286 ± 0.0026</td>
</tr>
<tr>
<td>127I($\gamma,n)^{126}$I</td>
<td>$4.0 \gamma/cm²/yr > 9$MeV</td>
<td>< 0.0069</td>
<td></td>
</tr>
<tr>
<td>other photonuclear</td>
<td></td>
<td>$< 1.3 \times 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>Piezoelectric acoustic transducers, 50g</td>
<td>10 ppb 238U</td>
<td>0.0577 ± 0.0031</td>
<td>0.142 ± 0.008</td>
</tr>
<tr>
<td>¶ side only, 25g</td>
<td>10 ppb 232Th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¶ bottom only, 25g</td>
<td>0.1 ppb 235U</td>
<td>0.0036 ± 0.0002</td>
<td>0.0072 ± 0.0004</td>
</tr>
<tr>
<td>¶ bottom only, 25g</td>
<td>10 Bq/kg 210Pb</td>
<td>0.0541 ± 0.0031</td>
<td>0.134 ± 0.008</td>
</tr>
<tr>
<td>CF$_3$I U and Th (α,n)</td>
<td>0.0159 ppt 238U</td>
<td>1.078 ± 0.061</td>
<td>4.37 ± 0.25</td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td>0.0488 ppt 232Th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td>0.0025 ppt 235U</td>
<td>1.078 ± 0.061</td>
<td>4.37 ± 0.25</td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td>25 μBq/kg 222Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td>25 μBq/kg 210Pb</td>
<td>1.078 ± 0.061</td>
<td>4.37 ± 0.25</td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td>6mo. deposition on steel</td>
<td>$8.0 \pm 0.5 \times 10^{-6}$</td>
<td>$2.00 \pm 0.12 \times 10^{-5}$</td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td>92.6μBq/m³ in IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td></td>
<td>1.84 ± 0.06</td>
<td>6.08 ± 0.25</td>
</tr>
<tr>
<td>Other radon induced backgrounds</td>
<td></td>
<td>0.264 ± 0.014</td>
<td>0.663 ± 0.025</td>
</tr>
</tbody>
</table>

4-page table, each $\sim 10^5 - 10^6$ years simulated
COUPP-500kg expected sensitivity at SNOLAB

![Graph showing expected sensitivity for WIMP masses and spin-dependent proton cross-sections for various experiments including COUPP, SIMPLE, IceCube, Super-K, and PICASSO. The graph includes different sensitivity bands for different mass ranges and cross-sections, highlighting the expected sensitivities for COUPP experiments with different mass and background controls.]
COUPP-500kg expected sensitivity at SNOLAB

Spin-independent cross-section (cm2)

COUPP (Jan. 2011)
CDMS (SUF)
COUPP (Apr. 2012)
CDMS
XENON10
COUPP−4, 4 mo, 0 bg
XENON100
COUPP−60, 4 mo, 0 bg
COUPP−60, 1 yr, 0 bg
COUPP−500, 1 yr

cMSSM

WIMP Mass (GeV)

10^{-40} 10^{-39} 10^{-38} 10^{-37} 10^{-36} 10^{-35} 10^{-34} 10^{-33} 10^{-32} 10^{-31} 10^{-30} 10^{-29} 10^{-28} 10^{-27} 10^{-26} 10^{-25} 10^{-24} 10^{-23} 10^{-22} 10^{-21} 10^{-20} 10^{-19} 10^{-18} 10^{-17} 10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}
Schedule

• 2013:
 – Finish mechanical design of all major components
 – Order Outer Vessel
 – Prototype hydraulic system
 – Test pressure control at full scale
 – First tests of 3rd generation acoustic sensors
 – Select SNOLAB installation location

• 2014:
 – Water tank construction at SNOLAB
 – Inner Vessel prototype testing at Fermilab
 – High purity fluid system construction
 – Control system and DAQ testing
2015:

- Construction of final Inner Vessel
- Installation of all equipment at SNOLAB
- Commissioning

Ready for Physics data taking in 2016!
Conclusions

COUPP family of detectors making huge improvements:

- COUPP-4kg currently running at SNOLAB
- COUPP-60kg running by the end of the year
- Calibrations, calibrations and calibrations:
 CIRTE, $^{88}\text{Y}/\text{Be}$, gamma, neutron, ...

COUPP-500kg is the following target:

- a tonne scale detector
- spin-independent sensitivity:
 $9 \times 10^{-47} \text{cm}^2$ (background-free year running)
- inexpensive and versatile
- ready for physics in 2016
Conclusions

COUPP family of detectors making huge improvements:

- COUPP-4kg currently running at SNOLAB
- COUPP-60kg running by the end of the year
- Calibrations, calibrations and calibrations: CIRTE, $^{88}\text{Y}/\text{Be}$, gamma, neutron, ...

COUPP-500kg is the following target:

- a tonne scale detector
- spin-independent sensitivity:

 \[9 \times 10^{-47} \text{cm}^2 \]
 (background-free year running)

- inexpensive and versatile
- ready for physics in 2016

More great and beautiful physics from COUPP just around the corner!