The International Axion Observatory (IAXO)

9th International Conference “Identification of Dark Matter 2012”
23-27 July 2012, Chicago, IL, USA

Julia K. Vogel
Lawrence Livermore National Laboratory
On behalf of the IAXO collaboration
Overview

- Solar Axion Searches
- The International Axion Observatory (IAXO)
 - Magnet
 - X-ray optics for IAXO
 - Low-background detectors for IAXO
 - Prototype Testing
- IAXO Prospects
 - Sensitivity Prospects
 - Collaboration and Schedule
- Conclusions

Irastorza et al. JCAP 06 (2011) 013
Solar Axion Searches

- Astrophysical hints for ALPs
- CDM "anthropic window"
- CDM "classical window" Vacuum mis. + defects
- CDM Defects dominate hep-ph/1202-5851
- Axions as HDM
- White Dwarfs
IAXO – The new generation helioscope

→ 1st generation: Brookhaven Experiment
→ 2nd generation: Tokyo Helioscope
→ 3rd generation: CAST

- IAXO = 4th generation axion helioscope
- Based on the more than a decade CAST experience!!
- CAST is established as a reference result in experimental axion physics
- No other technique can realistically improve CAST in such a wide mass range.
- No miracle needed! IAXO builds on CAST innovations to improve the helioscope technique…
IAXO – How to improve sensitivity

\[g_{\alpha\gamma}^4 \propto b^{1/2} \varepsilon^{-1} \times s^{1/2} \varepsilon_0^{-1} \times (BL)^{-2} A^{-1} \times t^{-1/2} \]

- **detectors**
 - \(b = \) background
 - \(\varepsilon = \) efficiency

- **optics**
 - \(s = \) spot size
 - \(\varepsilon_0 = \) efficiency

- **magnet**
 - \(B = \) magnetic field
 - \(L = \) magnet length
 - \(A = \) cross-sectional area

- **exposure**
 - \(t = \) time
IAXO – How to improve sensitivity

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>CAST-I</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>T</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>m</td>
<td>9.26</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>A</td>
<td>m2</td>
<td>2×0.0015</td>
<td>1.7</td>
<td>2.6</td>
<td>2.6</td>
<td>4.0</td>
</tr>
<tr>
<td>f^*_M</td>
<td></td>
<td>1</td>
<td>100</td>
<td>260</td>
<td>450</td>
<td>1900</td>
</tr>
<tr>
<td>b</td>
<td>$10^{-5}\frac{c}{\text{keV cm}^2\text{s}}$</td>
<td>~ 4</td>
<td>3×10^{-2}</td>
<td>10^{-2}</td>
<td>3×10^{-3}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>ϵ_d</td>
<td>0.5–0.9</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>ϵ_o</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>cm2</td>
<td>0.15</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>f^*_{DO}</td>
<td></td>
<td>1</td>
<td>6</td>
<td>14</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>ϵ_t</td>
<td>0.12</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>year</td>
<td>~ 1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>f^*_{T}</td>
<td></td>
<td>1</td>
<td>2.7</td>
<td>2.7</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>f^*</td>
<td></td>
<td>1</td>
<td>1.6×10^3</td>
<td>9.8×10^3</td>
<td>6.3×10^4</td>
<td>2.7×10^5</td>
</tr>
</tbody>
</table>
IAXO – The new generation helioscope
IAXO – The new generation helioscope

Randy Hill, LLNL
IAXO – The new generation helioscope

Randy Hill, LLNL
Magnet for IAXO

- CAST has one of the best existing magnets than one can “recycle” for axion physics (LHC test magnet)
- Only way to make a step further is to build a new magnet, specifically for axions
- Work ongoing, but best option up to now seems to be a **toroidal configuration** (similar to ATLAS):
 - Much bigger aperture than CAST: ~0.5-1 m per bore
 - Relatively light (no iron yoke)
 - Bores possibly at room temperature

→ A magnet that looks like a detector magnet with the behavior of an accelerator magnet (little stress, strong field,...)
Magnet for IAXO

- Current IAXO design favors bores between coils
 - FOM
 - More flexibility
- Scenario 2 conservative, better than scenario 3 is possible → Work on further optimization ongoing

- Total Radius = 2 m
- Bore diameter = 600 mm
- Number of bores = 8
- Peak field = 6 T
- Stored Energy = 500 MJ
- MFOM = 300
X-ray Optics

- X-ray community put lots of money and effort into development of reflective x-ray optics:
 - HighTech, expensive, unique
 - Excellent imaging capabilities

- Innovations include:
 - Nested designs (i.e. Wolter telescopes)
 - Low-cost substrates
 - Highly reflective coatings

- IAXO optics requirements:
 - Exquisite imaging not needed
 - Need to cover large area:
 → IAXO requires dedicated but cost-effective optics
 - Good throughput (0.3 – 0.5)
 - Small focal point (~1 cm²)
X-ray Optics

- **Most favored IAXO solution:** thermally-formed glass substrates optics
 - Successfully used for NuSTAR
 - Leverage of existing infrastructure → Minimize costs & risks
 - Allows for optimization of the reflective coating (multilayers or thin metal films) of each layer

- **NuSTAR launched 13 June 2012**
 - Specialized tooling to mirror production and telescope assembly now available
 - Hardware can be easily configured to make optics with a variety of designs and sizes

- **Key institutes of NuSTAR optics team**
 Columbia, DTU Space, LLNL → All in IAXO!

W Craig et al., Proc SPIE, 8147, (2011)
Low-background detectors

- **Goal**
 - Micromegas detectors with at least 10^{-7} cts/(keV×cm2×s)
 - If possible go down to 10^{-8} cts/(keV×cm2×s)

- **Work ongoing**
 - Experimental tests with current micromegas detectors at CERN, Saclay & Zaragoza
 - Underground setup at Canfranc
 - Simulation works to build up a background model
 - Design a new detector with improvements implemented
Low-background detectors

- **Latest Micromegas:** Background improved by factor 20
 - Shielding
 - Radiopurity & new manufacturing technique (microbulk readouts)
 - More powerful offline cuts

- **Tests in controlled conditions underground at Canfranc:**
 - Better shielding coverage
 - Thicker shielding

History of background improvement of Micromegas detectors at CAST

- Backgrounds around 2×10^{-7} cts/keV/s/cm2 with improved shielding
 - ~30× better than CAST

Recent upgrade of shielding at CAST improves background further towards IAXO!
Pathfinder detector+optics for IAXO

- Small x-ray optics
 - Fabricated purposely using thermally-formed glass substrates (NuSTAR-like)

- Micromegas low background detector:
 - Apply lessons learned from R&D: compactness, better shielding, radiopurity,…
 - Aim for background of $10^{-7} \text{ cts/(keV}\times\text{cm}^2\times\text{s}}$ or lower

- Collaboration of key groups:
 Saclay, Zaragoza, LLNL, DTU, Columbia

 → Operation at CAST in 2013
 → Tests of techniques and acquisition of know-how for IAXO
IAXO sensitivity prospects

- **Hadronic axion models**
 - Improvements of **factor 8-30** in $g_{a\gamma}$
 $(4 \times 10^3 - 1 \times 10^6$ in signal strength!!)
 - QCD axions at masses of \simmeV seem out of reach even for an improved axion helioscope...

 But...

- **Non-hadronic axion models** provide extra axion emission from the Sun through axion-electron Compton and bremsstrahlung processes

IAXO could improve current CAST sensitivity to non-hadronic axions by about **3 orders of magnitude**
IAXO sensitivity prospects

Exploration of very extended QCD axion region

Laser exps.

Solar (CAST)

Microwave cavities (ADMX)

Astrophysical hints for ALPs

ALP hints

IAXO

IAXO complements ADMX measurements

Axion models
- Proto-collaboration formed
 - Most CAST groups
 - New groups + extended expertise (magnet, optics,…)
 - Open for interested groups
- Conceptual design report in preparation, LoI to be submitted to CERN soon
- 4th generation helioscope supported in latest draft of ASPERA roadmap 2011

Notional plan

- **Phase III**
- **Phase IV**
- **Phase V ??**
- **detector + optic R&D**
- **Build IAXO**
- **Commission IAXO**
- **IAXO science operations**
Conclusions

- **CAST** is established as a reference result in experimental axion physics
 - CAST PRL2004 most cited experimental paper in axion physics
 - Expertise gathered in magnet, optics, low background detectors, gas systems
 - No other technique can realistically improve CAST in such wide mass range.

- **IAXO** is the new generation helioscope (4th generation) to search for axions
 - Good prospects to improve CAST by 1-1.5 orders of magnitude in sensitivity
 - First solid steps towards conceptual design
 - Together IAXO and haloscopes (ADMX) could explore a big part of the QCD axion model region in the next decade
 - Potential for other physics (White Dwarfs, ALPs, …)
Thank you!