Constraining the number of neutrinos with CMB data from the South Pole Telescope

Ryan Keisler
U. Chicago
The effective number of neutrinos, \(N_{\text{eff}} \), can be constrained by cosmological data, particularly observations of the cosmic microwave background (CMB).

Overview

SPT + WMAP,
\[
N_{\text{eff}} = X \pm 0.62
\]

SPT+WMAP+(Hubble Constant+BAO),
\[
N_{\text{eff}} = Y \pm 0.42
\]
The effective number of neutrinos, N_{eff}, can be constrained by cosmological data, particularly observations of the cosmic microwave background (CMB).

SPT + WMAP,

$$N_{\text{eff}} = 3.85 \pm 0.62$$

SPT+WMAP+(Hubble Constant+BAO),

$$N_{\text{eff}} = 3.86 \pm 0.42$$ (~2σ preference for $N_{\text{eff}}>3$)
Outline

1. What is the CMB, and how does an extra neutrino affect it?
2. Constraints from SPT+WMAP
3. What’s next?
Outline

1. What is the CMB, and how does an extra neutrino affect it?

2. Constraints from SPT+WMAP

3. What’s next?
What is the Cosmic Microwave Background?

The constituents of the early universe (photons, electrons, protons, dark matter, neutrinos, ...) were coupled.

- gravity pulls,
- radiation pressure pushes (on some of them)

$=>$ oscillations
Eventually the universe expands and cools such that **neutral hydrogen can form**. “Recombination”

No more free electrons, no more Thomson scattering between photons and electrons.

=> Photons can travel freely, and we see them today as a blackbody with $T=2.73K$.

The small anisotropies we see in the CMB are due to oscillations in early plasma.
WMAP
Angular Power Spectrum

![Angular Power Spectrum Graph](image)

- **Angular Frequency (multipole)**
- **Power**

Graph Details:
- **X-axis:** Angular Frequency (multipole)
- **Y-axis:** Power in μK^2

Legend:
- **WMAP7**

```
[Image -448x-156 to 1472x924]
```
The Sound Scale

\[\theta_{\text{sound}} \sim \frac{1}{\theta_{\text{sound}}} \]

\(\theta_{\text{sound}} \) is the (angular) distance a sound wave could have traveled by recombination.
The **Damping Scale**

Photons aren’t perfectly coupled to electrons/protons. Photon has some mean free path and diffuses. **Oscillations on small scales are damped exponentially.**

θ_d is the (angular) diffusion length at recombination.
Angular Power Spectrum

Angular Frequency (multipole)
Sensitivity to Neutrinos

How does an extra neutrino affect these CMB observables, θ_s and θ_d?

An extra neutrino species increases the expansion rate during this radiation-dominated era.

$$\left(\frac{\dot{a}}{a} \right)^2 \equiv H^2 \propto (\rho_\gamma + \rho_\nu + \rho_{\text{matter}} + \ldots)$$

More neutrinos \Rightarrow higher density \Rightarrow faster expansion
Sensitivity to Neutrinos

Consider how the real space equivalents, \(r_s \) and \(r_d \), depend on the expansion rate, \(H \):

\[
\begin{align*}
 r_s &\propto \int_0^{a_*} \frac{c_s da}{a^2 H} \\
 r_s &\propto H^{-1}
\end{align*}
\]

\[
\begin{align*}
 r_d &\propto \int_0^{a_*} \frac{da}{a^3 \sigma T n_e H} \propto \frac{1}{H} \\
 r_d &\propto H^{-0.5}
\end{align*}
\]

\[
\frac{r_d}{r_s} = \frac{\theta_d}{\theta_s} \propto H^{0.5}
\]

(see 1104.2333, Z. Hou, RK, L. Knox, C. Reichardt)
Sensitivity to Neutrinos

\[\frac{r_d}{r_s} \propto H^{0.5} \propto (\rho_\gamma + \rho_\nu + \rho_m + \ldots)^{0.25} \]

\[\frac{\theta_d}{\theta_s} \propto (\rho_\gamma + \rho_\nu + \rho_m + \ldots)^{0.25} \]

- The ratio \(\frac{\theta_d}{\theta_s} \) is measured well using the CMB.
- The photon density \(\rho_\gamma \) is well known from 3K temperature of CMB.
- The ratio \(\frac{\rho_m}{\rho_\gamma + \rho_\nu} = 1 + z_{EQ} \) is also well measured using CMB.

We can solve for the neutrino density \(\rho_\nu \).

(see 1104.2333, Z. Hou, RK, L. Knox, C. Reichardt)
in practice...

\[
\frac{\theta_d}{\theta_s} \propto (\rho_\gamma + \rho_\nu + \rho_m + \ldots)^{0.22}
\]

~0.22, not 0.25, due to two competing effects (a*, the scale factor at recombination, is a function of expansion rate, as is electron density). See 1104.2333, Z. Hou, RK, L. Knox, C. Reichardt, for details.
defining N_{eff}

N_{eff} is the *effective number of relativistic species*.

$$N_{\text{eff}} \equiv \frac{\rho_\nu}{\rho_\gamma} \left(\frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \right)$$

The standard value is $N_{\text{eff}} = 3.046$.

This is

- 3.000 for the 3 neutrino species,
- 0.046 for energy injected by electron/positron annihilation.

$N_{\text{eff}} > 3.046$ could correspond to a new particle species that is relativistic prior to recombination and has the energy density of one of the standard neutrinos.
Take Away #1

\[\frac{\theta_d}{\theta_s} \]

CMB data that measures \(\frac{\theta_d}{\theta_s} \) can constrain the number of neutrinos, due to the sensitivity of that ratio to the expansion rate prior to recombination.
Outline

1. What is the CMB, and how does an extra neutrino affect it?

2. Constraints from SPT+WMAP

3. What’s next?
Outline

1. What is the CMB, and how does an extra neutrino affect it?

2. Constraints from SPT+WMAP

 Next talk: ACT+WMAP results from Sudeep Das.

3. What’s next?
The South Pole Telescope: a mm-wave observatory

- 10 meter primary mirror
 ~1 arcminute resolution

- 1st camera: 1000 bolometers.
 3 bands: 3.2, 2.0, 1.4 mm.
 2007-2011

- 2nd camera: 1600 bolometers.
 polarization-sensitive.
 2 bands: 3.2, 2.0 mm
 2012-?
Why the South Pole?

- **Atmospheric transparency and stability:**
 - Extremely dry and cold.
 - High altitude ~10,500 feet.
 - Sun below horizon for 6 months.

- **Unique geographical location:**
 - Observe the clearest views through the Galaxy, 24/365, “relentless observing”
 - Clean horizon.

- **Excellent support from existing research station.**
SPT 2500 deg2 “SZ” Survey

- 2500 deg2 at high galactic latitude in Southern Sky.
- 6% of the sky.
- RA: 20h to 7h
- Dec: -40 to -65

Final survey depths of:
- 90 GHz: 42 uK$_{CMB}$-arcmin
- 150 GHz: 18 uK$_{CMB}$-arcmin
- 220 GHz: 85 uK$_{CMB}$-arcmin

(In these units, tSZ is 1.7 times brighter at 90 GHz than at 150 GHz.)
SPT 2500 deg2 SZ Survey

Status: finished in Nov. 2011.
All results shown today use $1/3$ of this data.
SPT has ~20X better resolution and lower noise, but covers only ~5% of the sky.
SPT map

new massive galaxy cluster
Take the angular power spectrum of 1/3 of this:
...and you get this.
Cosmological Analysis

- **MCMC analysis** (cosmoMC/CAMB)

- **Data:**
 - **CMB** from **SPT**
 - **CMB** from **WMAP7**
 - **[H0 from HST, Riess et al]**
 - **[BAO from SDSS, Percival et al]**
Two component model:

- **CMB**, lensed primary CMB from flat \(\Lambda \)CDM, seven parameters:
 \[
 (\Omega_b h^2, \Omega_c h^2, \ell^*, \tau, \Delta^2_R, n_s, \text{Neff})
 \]

- **Foregrounds**,
 - SZ power (1 parameters)
 - emission from galaxies (shot noise & spatially correlated, 2 parameters)

10 parameters (7 cosmo., 3 “nuisance”)
No Neutrinos vs Standard Neutrinos?

Simple test: compare maximum likelihood in Neff=0 model to that in Neff=3.046 model.

Standard neutrinos are preferred over no neutrinos preferred by $\delta \chi^2 = 56.3$, i.e. 7.5-sigma.

The CMB strongly detects presence of neutrinos in early universe.

Constraints on Neff

- $N_{\text{eff}} = 3.85 \pm 0.62 \text{ (SPT+WMAP7)}$
- $N_{\text{eff}} = 3.86 \pm 0.42 \text{ (SPT+WMAP7+H0+BAO)}$

See RK, C. Reichardt et al, 1105.3182

(1.3σ higher than 3.046)

(1.9σ higher than 3.046)
The CMB data are consistent with standard Neff. Adding the “low-redshift” data (H0+BAO) then favors Neff>3.046 at ~2σ.
Are high-Neff models consistent with galaxy clusters?

- High-Neff models also have high sigma8's and are disfavored by abundance of low-redshift galaxy clusters (Vikhlinin et al).

- However, all of this “tension” goes away if neutrinos are allowed to have total mass of \(\sim 0.3 \text{ eV} \), since that lowers the CMB prediction for sigma8.
And the improvement on N_{eff} is really due to the improvement on the angle ratio, (θ_d/θ_s).

SPT+WMAP measures the angle ratio, (θ_d/θ_s), much better than WMAP alone.

If you apply a (θ_d/θ_s) prior to the WMAP data, you get the WMAP+SPT result.

(see 1104.2333, Z. Hou, RK, L. Knox, C. Reichardt)
Take Away #2

CMB data strongly detect presence of neutrinos in the early universe and measure Neff to be 1.3σ higher than standard value.

- Neff = 3.85 +/- 0.62

When CMB data are combined with low-redshift data, Neff is measured to be $\sim2\sigma$ higher than standard value.

- Neff = 3.86 +/- 0.42
1. What is the CMB, and how does an extra neutrino affect it?

2. Constraints from SPT+WMAP

3. What’s next?
Current constraints on Neff:

SPT 800 deg2 (+WMAP7+H0+BAO):
\[dN_{\text{eff}} \sim 0.42 \]

SPT 2500 deg2 (+WMAP7+H0+BAO):
\[dN_{\text{eff}} \sim 0.33 \]

Planck:
\[dN_{\text{eff}} \sim 0.2 \]

CMBpol:
\[dN_{\text{eff}} \sim 0.05 \]
(see Galli et al. 1005.3808)
Current constraints on Neff:

SPT 800 deg2 (+WMAP7+H0+BAO):
\[d\text{Neff} \sim 0.42 \]

Planck:
\[d\text{Neff} \sim 0.2 \]

CMBpol:
\[d\text{Neff} \sim 0.05 \] (see Galli et al. 1005.3808)

Projections for Neff:

SPT 2500 deg2 (+WMAP7+H0+BAO):
\[d\text{Neff} \sim 0.33 \]
SPT 2500 sq. deg. Power Spectrum

$\ell (\ell + 1) c^2 / 2 \pi \text{ [}\mu K^2\text{]}$ vs. ℓ

$\Delta N_{\text{eff}} \sim 0.33$

Work led by Kyle Story, Zhen Hou, Christian Reichardt, RK.
- CMB data can constrain the number of neutrinos due to the neutrinos’ effect on the expansion rate.

- Current CMB data detect neutrinos with high significance and are consistent with standard neutrino content. Adding low-redshift data leads to a 2σ preference for high Neff.

- In the next 3 months we should know Neff to 0.33.

In the next 9 months we should know Neff to 0.2.
extra slides
This ratio is also a function of the **primordial helium abundance, Y_p.** In standard BBN, this is a weak function of N_{eff}.

In our fits to the CMB data, we self-consistently change Y_p as a function of the N_{eff} and $\Omega_b h^2$ using a fitting formula from Simha & Steigman 2008). This actually gives us extra sensitivity to N_{eff}.

(see 1104.2333, Z. Hou, RK, L. Knox, C. Reichardt)