Fitting the short-baseline anomalies

Joachim Kopp

The 4th neutrino – U Chicago, May 19, 2012

Fermilab
Outline

1. Sterile neutrinos
2. Data sets and fitting procedure
3. Fit results
4. Relation between appearance and disappearance
5. Conclusions
Theoretical motivation for sterile neutrinos

- **Standard Model singlet** fermions are a very generic feature of “new physics” models
 - Leftovers of extended gauge multiplets (e.g. GUT multiplets) (typically heavy)
 - Dark matter (keV ... TeV or above)

- **Neutrino–singlet mixing** is one of the allowed “portals” between the SM and a hidden sector.

- **SM singlet fermions can live at any mass scale**
 - Here: Focus on $\mathcal{O}(\text{eV})$ sterile neutrinos (accessible to oscillation experiments)
 - Motivated experimentally

- **Typical Lagrangian:**

\[
\mathcal{L}_{\text{mass}} \supset Y_{\nu} \bar{L} H^* N_R + m_s \bar{\nu}_s N_R + \frac{1}{2} M \overline{N^c_R} N_R + h.c.
\]

⇒ mass mixing between active and sterile neutrinos
Signatures in oscillation experiments

- Disappearance of active neutrinos (e.g. $\nu_e \rightarrow \nu_s$ oscillations)
- Anomalous transitions Appearance among active neutrinos (e.g. $\nu_\mu \rightarrow \nu_s \rightarrow \nu_e$)

Oscillation length $L_{\text{osc}} = \frac{4\pi E}{\Delta m_{41}^2}$ different from SM expectation (typically shorter)

Notation: $\Delta m_{jk}^2 = m_j^2 - m_k^2$; $m_{4,5}$: mostly sterile, $m_{1,2,3}$: mostly active
Sterile neutrino oscillations

Idea:

- Introduce extra neutrino flavor ν_s, mixing with the active ones
- **Appearance searches** (KARMEN, NOMAD, MiniBooNE . . .) constrain $\nu_\mu \rightarrow \nu_s \rightarrow \nu_e, \nu_\tau$
- **Disappearance searches** (reactors, CDHS, MINOS . . .) constrain $\nu_e, \nu_\mu \rightarrow \bar{\nu}_s$
- $\bar{\nu}_e \rightarrow \bar{\nu}_s$ oscillations explain reactor anomaly
- $\nu_\mu \rightarrow \nu_s \rightarrow \nu_e$ oscillations explain LSND + MiniBooNE $\bar{\nu}$
Outline

1 Sterile neutrinos

2 Data sets and fitting procedure

3 Fit results

4 Relation between appearance and disappearance

5 Conclusions
Our fitting procedure

- **Atmospheric neutrinos:** Eight classes of events: Sub-GeV e, μ ($p < 400$ GeV/c), Sub-GeV e, μ ($p > 400$ GeV/c), Multi-GeV e, μ, Upward stopping μ, upward throughgoing μ, 10 zenith angle bins each

- **MINOS:** Include NC and CC disappearance search
 (based on 1001.0336 and Neutrino 2010 talk by P. Vahle)

- **Reactor experiments:**
 - Bugey 3 (incl. spectrum), Bugey 4, Chooz (incl. spectrum),
 - Goesgen 1–3, ILL, Krasnoyarsk 1–3, Palo Verde, Rovno

- **SBL ν_e appearance experiments:**
 - LSND, KARMEN, MiniBooNE (ν (2010) and $\bar{\nu}$ data, consider only $E > 475$ MeV, i.e. low-E excess in ν_e sample not included)

- **Gallium anomaly** not included

- **SBL ν_μ disappearance experiments:** CDHS, NOMAD

- **All codes reproduce the individual fits** from the respective experiments.

JK Maltoni Schwetz 1103.4570 and work in progress

LSND and MiniBooNE

- **LSND:**
 - $\bar{\nu}_e$ appearance in $\bar{\nu}_\mu$ beam from stopped pion source (3σ)

- **MiniBooNE:**
 - No significant ν_e or $\bar{\nu}_e$ excess in the LSND-preferred region
 - but $\bar{\nu}_e$ consistent with LSND
 - Low-\(E\) excess not understood

![Graph showing beam excess and LSND $\bar{\nu}_e$](image1)

![Graph showing MiniBooNE ν_e and $\bar{\nu}_e$](image2)
The reactor anomaly

- **Recent reevaluation** of expected reactor $\bar{\nu}_e$ flux is $\sim 3.5\%$ higher than previous prediction. Mueller et al. arXiv:1101.2663, confirmed by P. Huber arXiv:1106.0687

- **Method**: Use measured β-spectra from ^{238}U, ^{235}U, ^{241}Pu fission at ILL and convert to $\bar{\nu}_e$ spectrum (for single β-decay: $E_\nu = Q - E_e$)

- **Problem**: Requires knowledge of Q-values for all contributing decays. → take from nuclear databases where available, fit to data otherwise

- **Cross check**:
 - Simulate **mock e^- spectra** using few well-understood β-decays
 - Reconstruct $\bar{\nu}_e$ spectrum using **old method**: Result is 3% too low
 - Reconstruct $\bar{\nu}_e$ spectrum using **new method**: Result is exact.

- **Possible problem**: Poorly understood effects in nuclei with large log ft. Huber arXiv:1106.0687
The reactor anomaly

- Have short-baseline reactor experiments observed a $\bar{\nu}_e$ deficit?

![Graph showing short-baseline reactor anomaly data](image)

red = old reactor $\bar{\nu}_e$ flux prediction

blue = new reactor $\bar{\nu}_e$ flux prediction

Mention et al. arXiv:1101.2755
MINOS NC disappearance search

- Based on arXiv:1001.0336 and data shown at Neutrino 2010
- GLoBES simulation
- NC data:
 - Use spectra and detector response functions based on MINOS MC (courtesy Alex Sousa)
- CC data:
 - NuMI fluxes courtesy Mary Bishai
 - Backgrounds and efficiencies based on published results
- Systematic uncertainties:
 - Based on published numbers, but simplified treatment
 - Some fudging in CC channel
MINOS NC disappearance search (2)

Near detector NC

Far detector NC

Near detector CC

Far detector CC

Events / GeV

E_{reco} [GeV]

Fitting the short-baseline anomalies

Joachim Kopp
MINOS NC disappearance search (3)

Joachim Kopp
Fitting the short-baseline anomalies
A 3+1 model: 3 active neutrinos + 1 sterile neutrino

- Short baseline: Standard oscillations ineffective (Δm_{21}^2, Δm_{31}^2 too small)
- Add extra (sterile) neutrino
- Fit shows: 3+1 neutrino scheme does not work well

JK Maltoni Schwetz 1103.4570 and work in progress
see also Giunti Laveder 1107.1452 and 1109.4033; Mention et al. 1101.2755; Karagiorgi et al. 0906.1997 and 1110.3735

"disappearance" = SBL reactors, CDHS, atmospheric ν, MINOS
θ = effective mixing angle for $\overline{\nu}_\mu \rightarrow \overline{\nu}_s \rightarrow \overline{\nu}_e$ oscillations
Global fit in a 4-flavor scheme

| $|\Delta m_{41}^2|$ | $|U_{e4}|$ | $|U_{\mu4}|$ | χ^2/dof |
|-----------------|---------|---------|-------------|
| STD | | | |
| 3+1 | 0.48 | 0.14 | 0.23 | 287.6/256 |
| | | | |
| LSND+MB($\bar{\nu}$) vs rest | appearance vs disapp. |
| old | new | old | new |
| $\chi^2_{PG,3+1}$/dof | 27.3/2 | 25.8/2 | 15.7/2 | 14.2/2 |
| PG_{3+1} | 1.2×10^{-6} | 2.5×10^{-6} | 3.9×10^{-4} | 8.2×10^{-4} |

Parameter goodness of fit: Test compatibility of 2 data sets by comparing global χ^2_{min} to χ^2_{min} for separate fits.
The Giunti–Laveder fit

Includes the following data sets:

- $\nu_\mu \rightarrow \nu_e$ appearance data:
 - LSND
 - MiniBooNE
 - KARMEN
 - NOMAD

- ν_μ disappearance data:
 - CDHS
 - MINOS bound on $|U_{\mu4}|$

- $\bar{\nu}_e$ disappearance data:
 - Short baseline reactor experiments
 - KamLAND bound on $|U_{e4}|$
 - Gallium anomaly

- ν_e disappearance data:
 - $\nu_e-^{12}C$ CC scattering in KARMEN and LSND

Giunti Laveder arXiv:1111.1069
The Giunti–Laveder fit (2)

APP/DIS curves: \(3\sigma\) C.L.
Parameter goodness of fit (APP vs. DIS): \(3 \times 10^{-3}\)

Giunti Laveder arXiv:1111.1069
The Karagiorgi et al. fit

Includes the following data sets:

- \(\overline{\nu}_\mu \rightarrow \overline{\nu}_e \) appearance data:
 - LSND
 - MiniBooNE
 - KARMEN
 - NOMAD

- \(\nu_\mu \) disappearance data:
 - CDHS
 - CCFR84

- \(\overline{\nu}_e \) disappearance data:
 - Short baseline reactor experiments

The Karagiorgi et al. fit (2)

Global fit in a 5-flavor scheme

Check if more than one sterile neutrino improves the fit:

\[\Delta m_{41} [\text{eV}^2] \]

\[\Delta m_{51} [\text{eV}^2] \]

90\%, 95\%, 99\%, 99.73\%

JK Maltoni Schwetz 1103.4570 and work in progress
Global fit in a 5-flavor scheme (2)

| Parameter | $|\Delta m_{41}^2|$ | $|U_e4|$ | $|U_\mu4|$ | $|\Delta m_{51}^2|$ | $|U_e5|$ | $|U_\mu5|$ | δ/π | χ^2/dof |
|-----------|-----------------|--------|--------|-----------------|--------|--------|----------|-------------|
| STD | | | | | | | | 287.6/256 |
| 3+1 | 0.48 | 0.14 | 0.23 | | | | -0.31 | 255.5/252 |
| 3+2 | 1.10 | 0.14 | 0.11 | 0.82 | 0.13 | 0.12 | 0.14 | 245.2/247 |
| 1+3+1 | 0.48 | 0.13 | 0.12 | 0.90 | 0.15 | 0.15 | 0.62 | 241.6/247 |

<table>
<thead>
<tr>
<th>Parameter</th>
<th>χ^2/dof</th>
<th>χ^2/dof</th>
<th>χ^2/dof</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{PG,3+1}^2$/dof</td>
<td>27.3/2</td>
<td>25.8/2</td>
<td>15.7/2</td>
<td>14.2/2</td>
</tr>
<tr>
<td>PG_{3+1}</td>
<td>1.2×10^{-6}</td>
<td>2.5×10^{-6}</td>
<td>3.9×10^{-4}</td>
<td>8.2×10^{-4}</td>
</tr>
<tr>
<td>$\chi_{PG,3+2}^2$/dof</td>
<td>30.0/5</td>
<td>24.8/5</td>
<td>24.7/4</td>
<td>19.5/4</td>
</tr>
<tr>
<td>PG_{3+2}</td>
<td>1.5×10^{-5}</td>
<td>1.5×10^{-4}</td>
<td>5.7×10^{-5}</td>
<td>6.1×10^{-4}</td>
</tr>
<tr>
<td>$\chi_{PG,1+3+1}^2$/dof</td>
<td>24.9/5</td>
<td>21.2/5</td>
<td>19.6/4</td>
<td>10.7/4</td>
</tr>
<tr>
<td>PG_{1+3+1}</td>
<td>1.5×10^{-4}</td>
<td>7.5×10^{-4}</td>
<td>6.0×10^{-3}</td>
<td>3.1×10^{-2}</td>
</tr>
</tbody>
</table>

Parameter goodness of fit: Test compatibility of 2 data sets by comparing global χ_{min}^2 to χ_{min}^2 for separate fits
Does removing *one* experiment relax the tension?

<table>
<thead>
<tr>
<th>Removing ...</th>
<th>LSND+MB($\bar{\nu}$) vs rest</th>
<th>appearance vs disapp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG$_{3+1}$</td>
<td>PG$_{3+2}$</td>
</tr>
<tr>
<td>KARMEN</td>
<td>1.2×10^{-5}</td>
<td>6.2×10^{-4}</td>
</tr>
<tr>
<td>NOMAD</td>
<td>2.6×10^{-6}</td>
<td>1.5×10^{-4}</td>
</tr>
<tr>
<td>MB ν</td>
<td>2.2×10^{-5}</td>
<td>5.1×10^{-4}</td>
</tr>
<tr>
<td>MB $\bar{\nu}$</td>
<td>2.9×10^{-6}</td>
<td>2.0×10^{-3}</td>
</tr>
<tr>
<td>LSND</td>
<td>2.3×10^{-2}</td>
<td>2.1×10^{-2}</td>
</tr>
<tr>
<td>Reactors</td>
<td>4.4×10^{-4}</td>
<td>7.9×10^{-2}</td>
</tr>
<tr>
<td>CDHS</td>
<td>1.2×10^{-5}</td>
<td>3.7×10^{-4}</td>
</tr>
<tr>
<td>Atmospheric</td>
<td>8.1×10^{-6}</td>
<td>6.9×10^{-5}</td>
</tr>
<tr>
<td>MINOS</td>
<td>1.4×10^{-5}</td>
<td>1.1×10^{-3}</td>
</tr>
</tbody>
</table>
Impact on standard oscillation parameters

Curves, circles: 3 flavors, atm + MINO
Colors, stars: 3+2 flavors, all exps

90%, 95%, 99%, 99.73%
Outline

1. Sterile neutrinos
2. Data sets and fitting procedure
3. Fit results
4. Relation between appearance and disappearance
5. Conclusions
Relation between appearance and disappearance

3 + 1 neutrinos

At large baseline ($L \gg 4\pi E/\Delta m^2_{41}$, but $L \ll 4\pi E/\Delta m^2_{31}$)

\[
P_{ee} = 1 - 2|U_{e4}|^2(1 - |U_{e4}|^2)
\]
\[
P_{\mu\mu} = 1 - 2|U_{\mu4}|^2(1 - |U_{\mu4}|^2)
\]
\[
P_{e\mu} = 2|U_{e4}|^2|U_{\mu4}|^2
\]

It follows

\[
2P_{e\mu} \approx (1 - P_{ee})(1 - P_{\mu\mu})
\]

In the 3 + 1 case, at large enough baseline, there is a one-to-one relation between the appearance and disappearance probabilities.
Relation between appearance and disappearance

3 + 2 neutrinos

At large baseline ($L \gg 4\pi E/\Delta m_{41}^2$, but $L \ll 4\pi E/\Delta m_{31}^2$)

\[
P_{ee} = 1 - 2 \left[|U_{e4}|^2 (1 - |U_{e4}|^2) + |U_{e5}|^2 (1 - |U_{e5}|^2) - |U_{e4}|^2 |U_{e5}|^2 \right]
\]

\[
P_{\mu\mu} = 1 - 2 \left[|U_{\mu4}|^2 (1 - |U_{\mu4}|^2) + |U_{\mu5}|^2 (1 - |U_{\mu5}|^2) - |U_{\mu4}|^2 |U_{\mu5}|^2 \right]
\]

\[
P_{e\mu} = 2 \left[|U_{e4}|^2 |U_{\mu4}|^2 + |U_{\mu4}|^2 |U_{\mu5}|^2 + \text{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*) \right]
\]
Relation between appearance and disappearance

3 + 2 neutrinos

At large baseline \((L \gg 4\pi E/\Delta m^2_{41})\), but \(L \ll 4\pi E/\Delta m^2_{31}\)

\[
P_{ee} = 1 - 2 \left[|U_{e4}|^2 (1 - |U_{e4}|^2) + |U_{e5}|^2 (1 - |U_{e5}|^2) - |U_{e4}|^2 |U_{e5}|^2 \right]
\]

\[
P_{\mu\mu} = 1 - 2 \left[|U_{\mu4}|^2 (1 - |U_{\mu4}|^2) + |U_{\mu5}|^2 (1 - |U_{\mu5}|^2) - |U_{\mu4}|^2 |U_{\mu5}|^2 \right]
\]

\[
P_{e\mu} = 2 \left[|U_{e4}|^2 |U_{\mu4}|^2 + |U_{\mu4}|^2 |U_{\mu5}|^2 + \text{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*) \right]
\]

It follows

\[
2P_{e\mu} \simeq (1 - P_{ee})(1 - P_{\mu\mu})
\]

\[
+ 4 \left[\text{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*) + 4 |U_{e4}|^2 |U_{\mu5}|^2 + 4 |U_{e5}|^2 |U_{\mu4}|^2 \right]
\]

\[
= (1 - P_{ee})(1 - P_{\mu\mu}) - 2 \left[|U_{e4}|^2 |U_{\mu5}|^2 + |U_{e5}|^2 |U_{\mu4}|^2 \right]
\]

\[
- 2 |U_{e4} U_{\mu5} - U_{e5} U_{\mu4}|^2
\]
Relation between appearance and disappearance

3 + 2 neutrinos

At large baseline ($L \gg 4\pi E/\Delta m^2_{41}$), but $L \ll 4\pi E/\Delta m^2_{31}$

\[
P_{ee} = 1 - 2\left[|U_{e4}|^2(1 - |U_{e4}|^2) + |U_{e5}|^2(1 - |U_{e5}|^2) - |U_{e4}|^2|U_{e5}|^2\right]
\]

\[
P_{\mu\mu} = 1 - 2\left[|U_{\mu4}|^2(1 - |U_{\mu4}|^2) + |U_{\mu5}|^2(1 - |U_{\mu5}|^2) - |U_{\mu4}|^2|U_{\mu5}|^2\right]
\]

\[
P_{e\mu} = 2\left[|U_{e4}|^2|U_{\mu4}|^2 + |U_{\mu4}|^2|U_{\mu5}|^2 + \text{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*)\right]
\]

It follows

\[2P_{e\mu} \leq (1 - P_{ee})(1 - P_{\mu\mu})\]

Unlike in the $3 + 1$ case, for $3 + 2$ models, there is **NO** one-to-one relation between the appearance and disappearance probabilities.

However, there is an **inequality**, which can be used to set meaningful constraints.
Outline

1. Sterile neutrinos
2. Data sets and fitting procedure
3. Fit results
4. Relation between appearance and disappearance
5. Conclusions

Joachim Kopp
Fitting the short-baseline anomalies
Global fits — take home message

Substantial tension in the global fit.

- Is one (or all) of the positive results not due to neutrino oscillations?
- Are some of the null results wrong?
 (one being wrong is not enough!)
- Are there more than 2 sterile flavors?
- Are there sterile neutrinos plus something else?
Thank you!