Overview of non-Gaussian models

Marilena Loverde
AMIAS Member, Institute for Advanced Study
Inflation as the origin of structure

- Quantum fluctuations
 - Inflation
 - Small matter & energy fluctuations
 - Curvature
 - \(\delta T_{\text{CMB}} \)
 - \(\delta \rho_{\text{matter}} \)
 - \(\delta n_{\text{galaxies}} \)

- Gravitational collapse

Sloan stars, galaxies, clusters of galaxies
Inflation as the origin of structure

quantum fluctuations

inflation

small matter & energy fluctuations

WMAP

gravitational collapse

stars, galaxies, clusters of galaxies

inflaton

curvature

T

CMB

matter

n
galaxies

statistics of these

probe of this era

$\delta \varphi_{\text{inflaton}} \rightarrow \Phi_{\text{curvature}} \sim \delta T_{\text{CMB}} \sim \delta \rho_{\text{matter}} \sim \delta n_{\text{galaxies}}$
reminder: simplest option, \textbf{Gaussian}

\[\Phi_{\text{curvature}} \]

\[
\langle \Phi(x)\Phi(y) \rangle \leftrightarrow P_\Phi(k)
\]

\[k^2 P_\Phi(k) \quad \text{power per mode} \]

probability distribution:

\[\Phi \text{ value} \]
reminder: simplest option, **Gaussian**

\[\Phi_{\text{curvature}} \]

two-point function:
\[\langle \Phi(x)\Phi(y) \rangle \leftrightarrow P_\Phi(k) \]

\[k^2P_\Phi(k) \quad \text{power per mode} \]

\[\langle \Phi(x)\Phi(y)\Phi(z) \rangle = 0 \]
\[\langle \Phi(x)\Phi(y)\Phi(z)\Phi(w) \rangle = \langle \Phi(x)\Phi(y) \rangle \langle \Phi(z)\Phi(w) \rangle \]
\[+ \langle \Phi(x)\Phi(z) \rangle \langle \Phi(y)\Phi(w) \rangle \]
\[+ \langle \Phi(x)\Phi(w) \rangle \langle \Phi(y)\Phi(z) \rangle \]

\[\langle \Phi(x)\Phi(y)\Phi(z)\Phi(w)\Phi(s) \rangle = 0 \]

\[\ldots \]
reminder: simplest option, Gaussian

\(\Phi_{\text{curvature}} \)

two-point function:
\[\langle \Phi(x)\Phi(y) \rangle \leftrightarrow P_{\Phi}(k) \]

\[k^2 P_{\Phi}(k) \quad \text{power per mode} \]

vanishing or trivially related to two-point

\[\langle \Phi(x)\Phi(y)\Phi(z) \rangle = 0 \]
\[\langle \Phi(x)\Phi(y)\Phi(z)\Phi(w) \rangle = \langle \Phi(x)\Phi(y) \rangle \langle \Phi(z)\Phi(w) \rangle \]
\[+ \langle \Phi(x)\Phi(z) \rangle \langle \Phi(y)\Phi(w) \rangle \]
\[+ \langle \Phi(x)\Phi(w) \rangle \langle \Phi(y)\Phi(z) \rangle \]
\[\langle \Phi(x)\Phi(y)\Phi(z)\Phi(w)\Phi(s) \rangle = 0 \]
\[\ldots \]
single-field, slow-roll inflation predicts this

observations suggest IC’s are nearly Gaussian

BUT small departures may exist and could provide one of few observational handles on physics of inflation
Example mildly non-Gaussian initial conditions
\(\Phi(x) \sim \delta \sigma(x) + f_{NL} \delta \sigma(x)^2 \)

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001

\[\text{skewness} \sim f_{NL} \]
\[\text{kurtosis} \sim f_{NL}^2 \]
\[\ldots \]
\[\Phi(x) \sim \delta \sigma(x) + f_{\text{NL}} \delta \sigma(x)^2 \]

Here, \(\delta \sigma \) is a Gaussian field. The non-linear terms in \(\delta \sigma \) make \(\Phi \) non-Gaussian.

Skewness \(\sim f_{\text{NL}} \)
Kurtosis \(\sim f_{\text{NL}}^2 \)

This map completely specifies \(\Phi \) statistics.
\[\Phi(x) \sim \delta \sigma(x) + f_{NL} \delta \sigma(x)^2 \]

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001

\[\Phi(x) \sim \delta \sigma(x) + g_{NL} \delta \sigma(x)^3 + \ldots \]

(Okamoto and Hu 2002; Enqvist and Nurmi 2005)

skewness \sim f_{NL}
kurtosis \sim f_{NL}^2

\ldots

skewness \sim 0
kurtosis \sim g_{NL}

\ldots
\[\Phi(x) \sim \delta \sigma(x) + f_{\text{NL}} \delta \sigma(x)^2 \]

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001

\[\Phi(x) \sim \delta \sigma(x) + g_{\text{NL}} \delta \sigma(x)^3 + \ldots \]

(Okamoto and Hu 2002; Enqvist and Nurmi 2005)

\[\Phi(x) \sim \delta \varphi(x) + \delta \sigma(x) + \tilde{f}_{\text{NL}} \delta \sigma(x)^2 + \ldots \]

\[\tilde{f}_{\text{NL}} = f_{\text{NL}}(1 + P_{\varphi \varphi}/P_{\sigma \sigma})^2 \]

skewness \sim f_{\text{NL}}

kurtosis \sim f_{\text{NL}}^2

\[\tau_{\text{NL}} = f_{\text{NL}}^2(1 + P_{\varphi \varphi}/P_{\sigma \sigma}) \]

and \(P_{\varphi \sigma} = 0 \)

(\(\Phi = \text{primordial gravitational potential} \))

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010)
more generally, non-Gaussianity introduces non-trivial multi-point correlation functions (or polyspectra)
Bispectrum:

\[
\langle \Phi(k)\Phi(k')\Phi(k'') \rangle = 2f_{NL} (P_\Phi(k) P_\Phi(k') + \ldots) (2\pi)^3 \delta(k+k'+k'')
\]

(\(\Phi=\)primordial gravitational potential)
Bispectrum:

\[\langle \Phi(k)\Phi(k')\Phi(k'') \rangle = 2f_{NL} \left(P_{\Phi}(k) P_{\Phi}(k') + \ldots \right) (2\pi)^3 \delta(k+k'+k'') \]

function of triangle

largest in the “squeezed” limit

Trispectrum:

\[\langle \Phi(k)\Phi(k')\Phi(k'')\Phi(k'''') \rangle_c = g_{NL} \left(P_{\Phi}(k) P_{\Phi}(k') P_{\Phi}(k'') + \ldots \right) (2\pi)^3 \delta(k+k'+k''+k'''') \]

+ 2 \[T_{NL} \left(P_{\Phi}(k) P_{\Phi}(k') P_{\Phi}(|k+k'''|) + \ldots \right) (2\pi)^3 \delta(k+k'+k''+k'''') \]

function of a quadrilateral

g_{NL} term peaks in the limit

\[T_{NL} \text{ term peaks in the squashed limit} \]

(\(\Phi = \text{primordial gravitational potential} \))
Bispectrum:

\[\langle \Phi(k)\Phi(k')\Phi(k'') \rangle = 2f_{NL} (P_\Phi(k) P_\Phi(k') + \ldots) (2\pi)^3 \delta(k+k'+k'') \]

function of triangle

largest in the "squeezed" limit

Trispectrum:

\[\langle \Phi(k)\Phi(k')\Phi(k'')\Phi(k''') \rangle_c = g_{NL} (P_\Phi(k) P_\Phi(k') P_\Phi(k'') + \ldots) (2\pi)^3 \delta(k+k'+k''+k''') \]

+ \[2 \tau_{NL} (P_\Phi(k) P_\Phi(k') P_\Phi(|k+k'''|) + \ldots) (2\pi)^3 \delta(k+k'+k''+k''') \]

function of a quadrilateral

g_{NL} term peaks in the limit

\[\tau_{NL} \] term peaks in the squashed limit

so \(g_{NL} \) and \(\tau_{NL} \) different "shape" trispectra

\(\Phi=\text{primordial gravitational potential} \)
Helpful to consider how polyspectra couple different physical scales.
"f_{NL}" \quad $\Phi \sim \delta \sigma + f_{\text{NL}} \delta \sigma^2$

$$\langle \Phi_{\text{short}}^2 \rangle = \langle \sigma_{G,\text{short}}^2 \rangle \left(1 + 4 f_{\text{NL}} \sigma_{G,\text{long}}(x)\right)$$

small-scale power depends on large-scale fluctuations!

($\Phi =$ primordial gravitational potential)
\["f_{NL}\quad \phi \sim \delta \sigma + f_{NL} \delta \sigma^2 \]

\[\langle \Phi_{\text{short}}^2 \rangle = \left(\sigma_{G,\text{short}}^2 \right) (1 + 4 f_{NL} \sigma_{G,\text{long}}(x)) \]

\["g_{NL}\quad \phi \sim \delta \sigma + g_{NL} \delta \sigma^3 + \ldots \]

\[\langle \Phi_{\text{short}}^3 \rangle = 18 g_{NL} \left(\sigma_{G,\text{short}}^2 \right)^2 \sigma_{G,\text{long}}(x) \equiv f_{NL}^{\text{eff}}(x) \langle \sigma_{G,\text{short}}^2 \rangle^2 \]

(\Phi=\text{primordial gravitational potential})
"f_{NL}" \quad \Phi \sim \delta \sigma + f_{NL} \delta \sigma^2

\langle \Phi_{\text{short}}^2 \rangle = \langle \sigma_{G,\text{short}}^2 \rangle (1 + 4 f_{NL} \sigma_{G,\text{long}}(x))

"g_{NL}" \quad \Phi \sim \delta \sigma + g_{NL} \delta \sigma^3 + \ldots

\langle \Phi_{\text{short}}^3 \rangle = 18 g_{NL} \langle \sigma_{G,\text{short}}^2 \rangle^2 \sigma_{G,\text{long}}(x) \equiv f_{NL}^{\text{eff}}(x) \langle \sigma_{G,\text{short}}^2 \rangle^2

"T_{NL}" \quad \Phi \sim \delta \varphi + \delta \sigma + \tilde{f}_{NL} \delta \sigma^2 + \ldots

\langle \Phi_{s}^2 \rangle = \langle \Phi_{G,\text{short}}^2 \rangle (1 + 4 \tilde{f}_{NL} \sigma_{G,\text{long}}(x))

(\Phi=\text{primordial gravitational potential})
These are cartoon examples but these types of initial conditions can arise from real models.
For instance

\[V(\varphi, \sigma) \]

Linde and Mukhanov 1997; Lyth and Wands 2002
For instance, the inflaton potential $V(\varphi, \sigma)$ determines the dynamics of the universe. Inflation occurs when the inflaton dominates energy density, driving exponential expansion through the equation $H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\varphi}^2 + V(\varphi) \right)$.

The curvaton is an additional light field σ ($m_{\text{curv.}} \ll H$) that gets excited and eventually generates curvature perturbations Φ, providing evidence for the inflationary universe model.

Linde and Mukhanov 1997; Lyth and Wands 2002
For instance

```latex
potential \sim V(\varphi, \sigma)
```

total energy dominated by inflaton:

```
H^2 = \frac{8\pi G}{3} \left( \frac{1}{2} \dot{\varphi}^2 + V(\varphi) \right)
```

curvature perturbations from curvaton can be non-Gaussian

```
\Phi \sim \delta \varphi + \delta \sigma + \delta \sigma^2 + \ldots
```

```
\Phi \sim \delta \sigma + \delta \sigma^3 + \ldots
```

```
\Phi \sim \delta \varphi + \delta \sigma + \delta \sigma^2 + \ldots
```

Linde and Mukhanov 1997; Lyth and Wands 2002
For instance

potential $\sim V(\varphi, \sigma)$

$H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\varphi}^2 + V(\varphi) \right)$

perturbations from inflaton Gaussian

curvature perturbations from curvaton can be non-Gaussian

non-linearities all "local" in position space

Linde and Mukhanov 1997; Lyth and Wands 2002
But local models (i.e. $\Phi_{NG}(x) = F(\sigma_G(x))$) of non-Gaussianity is not the only option
Single-field inflation with strong self-interactions can also generate detectable non-Gaussianity

\[\langle \Phi^3 \rangle \quad \langle \Phi(k)\Phi(k')\Phi(k'') \rangle \propto \frac{1}{c_s^2} \]

skewness, bispectrum amplitude

BUT vanish in the "squeezed" limit

shape

largest in the "equilateral" limit

see Babich, Creminelli, Zaldarriaga 2004; Chen, Huang, Kachru, Shiu 2006; Senatore, Smith, Zaldarriaga 2011 (e.g. Dirac-Born-Infeld inflation, k-inflation, ghost inflation, inflation w dissipation)

Alishahiha, Silverstein, Tong 2004; Armendariz-Picon, Damour, Mukhanov 1999; Arkani-Hamed, Creminelli, Mukohyama, Zaldarriaga 2004; Nacir, Porto, Senatore, Zaldarriaga 2012
Single-field inflation with strong self-interactions can also generate detectable non-Gaussianity

skewness, bispectrum amplitude
\[\langle \Phi^3 \rangle \quad \langle \Phi(k)\Phi(k')\Phi(k'') \rangle \propto \frac{1}{c_s^2} \]

BUT vanish in the "squeezed" limit

where, vanish means
\[O+O(k_L^2/k_s^2) \]

see Babich, Creminelli, Zaldarriaga 2004; Chen, Huang, Zaldarriaga 2004; Armendariz-Picon, Damour, Mukhanov 1999; Arkani-Hamed, Creminelli, Mukohyama, Zaldarriaga 2004; Nacir, Porto, Senatore, Zaldarriaga 2012

(e.g. Dirac-Born-Infeld inflation, k-inflation, ghost inflation, inflation w dissipation)
a single-field that violates slow-roll can also generate observable non-Gaussianity

\[V(\phi) \]

skewness, bispectrum amplitude

\[\langle \Phi^3 \rangle \quad \langle \Phi(k)\Phi(k')\Phi(k'') \rangle \propto \text{local feature in } k \]

Chen, Easther, Lim 2006; Chen, Easther, Lim 2008; Flauger & Pajer 2010
(e.g. Axion monodromy: McAllister, Silverstein, Westphal 2008; Flauger, McAllister, Pajer, Westphal, Xu 2009)

still vanish in the "squeezed" limit

shape complicated!

\[\frac{k_3}{k_1} \]

\[\frac{k_2}{k_1} \]

\[\frac{k'}{k} \]

\[\frac{k''}{k} \]
single-field with modified initial vacuum state generates observable non-Gaussianity

skewness, bispectrum amplitude
\[\langle \Phi^3 \rangle \]
\[\langle \Phi(k)\Phi(k')\Phi(k'') \rangle \propto \beta_k \sim e^{-k^2/k_{\text{cut-off}}^2} \]

shape
largest in "flattened" configuration

still vanish in the "squeezed" limit

but, may have non-vanishing contributions in a limited, observable k-range

Holman and Tolley 2008
Agullo & Shandera 2012; Ganc & Komatsu 2012
In fact:

single-field inflation predicts

\[\langle \Phi(k)\Phi(k')\Phi(k''\rightarrow0) \rangle \approx f_{NL} \]

\[\approx \left(n_s - 1\right)(2\pi)^3 \delta(k+k') P_\Phi(k) P_\Phi(k') P_\Phi(k'') \]

where \(n_s = \frac{d\ln P_\Phi(k)}{d\ln k} + 4 \approx 1 \)

the so called “consistency relation”

so \(f_{NL} \gg \) few rules it out

Acquaviva, Bartolo, Matarrese, Riotto 2003; Maldacena 2003; Creminelli & Zaldarriaga 2004

(see also Tanaka, Urakawa 2011)
Note:

single-field consistency relation

\[f_{\text{NL}} \approx \frac{\partial \ln k^3 P_\phi}{\partial \ln k} = (n_s - 1) \]

also applies to \(g_{\text{NL}} \) and \(\tau_{\text{NL}} \)

\[g_{\text{NL}} \approx \frac{\partial \ln k^6 B_\phi}{\partial \ln k} = n_{\text{NG}} \]

\[\tau_{\text{NL}} \approx (n_s - 1)^2 \]

e.g. Chen, Huang, Shiu 2008; Leblond & Pajer 2011

(see also Tanaka, Urakawa 2011)

in terms of physical observables these are strictly zero

also have,

\[\tau_{\text{NL}} \gtrsim f_{\text{NL}}^2 \]

Suyama & Yamaguchi 2008; Sugiyama, Komatsu, Futamase 2011; Smith, ML, Zaldarriaga 2011
Single-field models do not generate such extreme couplings of perturbations on short and long length scales.

\[\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim \langle p_{\Phi}(k_S)\Phi(k_L) \rangle \sim f_{NL} k_L^{-3} \]

"squeezed" limit

\[k_S \quad k_{S-k_L} \quad k_L \]
mother fields $\gg H \longrightarrow$ single-field $\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim 0$

mother fields $\ll H \longrightarrow$ other fields relevant

can get $\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim f_{NL}k_s^{-3}k_L^{-3}$

mother fields $\sim H ? \longrightarrow$ quasi single-field

Chen & Wang 2010; Baumann & Green 2011
\[m_{\text{other fields}} \gg H \longrightarrow \text{single-field} \quad \langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle = 0 \]

\[m_{\text{other fields}} \ll H \longrightarrow \text{other fields relevant} \quad \langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle = f_{NL} k_S^{-3} k_L^{-3} \]

\[m_{\text{other fields}} \sim H \quad \text{?} \longrightarrow \text{quasi single-field} \quad \text{Chen & Wang 2010; Baumann & Green 2011} \]

\[\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim \langle P_\Phi(k_S)\Phi(k_L) \rangle \sim f_{NL} k_S^{-3} k_L^{-3} \left(\frac{k_L}{k_S} \right)^{3/2-v} \]

intermediate scalings possible!

\[v \sim \sqrt{9/4 - m^2/H^2} \]
How does primordial non-Gaussianity show up in large-scale structure?
HALO ABUNDANCE

dark matter halos form in peaks of the density field

non-Gaussianity changes the number density of peaks

Gaussian positive skewness no skewness, positive kurtosis

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000
HALO ABUNDANCE

\[\frac{dn_{NG}}{dM} / \frac{dn_G}{dM} \]

seems to work in comparison to N-body!

(with caveats about how you approximate the PDF)

see also Dalal, Dore, Huterer, Shirokov 2007; Grossi et al 2009; Kang, Norberg, Silk 2009; Pillepich, Porciani, Hahn 2009; Desjacques and Seljak 2010; Wagner, Verde, Boubekeur 2010
HALO ABUNDANCE

Pros: ingredients just $\langle \delta_M^2 \rangle$, $\langle \delta_M^3 \rangle$, $\langle \delta_M^4 \rangle$ -- insensitive to “shape” of bispectrum trispectrum. In principle $\langle \delta_M^3 \rangle$, $\langle \delta_M^4 \rangle$ effects not degenerate in dn/dM

Cons: cosmology with cluster abundance is really hard (mass–observable, degeneracy with σ_8 etc)
SCALE-DEPENDENT HALO-BIAS

A dark matter halo forms when $\delta \rho / \rho$ is larger than the collapse threshold δ_c.

\[
\delta \rho / \rho
\]
a dark matter halo forms when $\delta \rho / \rho$ is larger than the collapse threshold δ_c which is easier to reach on top of a long wavelength density perturbation

\[\delta_{c-l} \]
a dark matter halo forms when $\delta \rho/\rho$ is larger than the collapse threshold δ_c which is easier to reach on top of a long wavelength density perturbation.

so the number of halos fluctuates depending on δ_1

$\delta n = \frac{\partial \delta n}{\partial \delta} \delta_1 \ldots$
the number of halos fluctuates depending on δ_l

BUT with f_{NL}, the small-scale power fluctuates also depending on Φ_l
the number of halos fluctuates depending on δ_l

BUT with f_{NL}, the small-scale power fluctuates also depending on Φ_l

$$\delta n = \frac{\partial n}{\partial \delta} \delta_l + 4f_{NL} \frac{\partial n}{\partial P_s} \Phi_l \ldots$$
the number of halos fluctuates depending on δ_1

$\delta n = \frac{\partial n}{\partial \delta} \delta_1 + 4f_{NL} \frac{\partial n}{\partial \rho_s} \Phi_1 \ldots$

Poisson's

$\nabla^2 \Phi_1 \sim 4\pi G \delta_1$

$\delta n \sim \left(\frac{\partial n}{\partial \delta} + \frac{4f_{NL}}{k^2} \frac{\partial n}{\partial \rho_s} \right) \delta_1$

BUT with f_{NL}, the small-scale power fluctuates also depending on Φ_1

Dalal, Doré, Huterer, Shirokov 2007

Matarrese & Verde 2008; Slosar, Hirata, Seljak, Ho, Padmanabhan 2008; Afshordi & Tolley 2008; McDonald 2008
a dark matter halo forms when $\delta \rho / \rho$ is larger than the collapse threshold

with g_{NL} non-Gaussianity, the small-scale skewness fluctuates with Φ_1

so the number of halos fluctuates depending on δ_1 and Φ

$\delta n = \frac{\partial n}{\partial \delta} \delta_1 + 18 g_{NL} \frac{\partial n}{\partial S_3} \Phi_1 \ldots$

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011
a dark matter halo forms when $\delta \rho / \rho$ is larger than the collapse threshold

with g_{NL} non-Gaussianity, the small-scale skewness fluctuates with Φ_1

so the number of halos fluctuates depending on δ_1 and ϕ

$\nabla^2 \Phi_1 \sim 4\pi G \delta_1$

$\frac{\delta n}{\delta \delta} \delta_1 + 18g_{\text{NL}} \frac{\delta n}{\delta S_3} \Phi_1 \ldots$

$\approx \left(\frac{\delta n}{\delta \delta} + 18g_{\text{NL}} \frac{\delta n}{\delta S_3} / k^2 \right) \delta_1(k) \ldots$

bias depends on Fourier scale k

Desjacques & Seljak 2009; Smith, Ferraro, ML 2011
SCALE-DEPENDENT HALO-BIAS

local non-Gaussianity

\[\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle) + g_{NL} (\Phi_G(x)^3 - \Phi_G \langle \Phi_G^2 \rangle) \]

\[\rightarrow \text{scale dependent halo bias} \]

\[b_{f_{NL},g_{NL}}(k) \sim b + \frac{f_{NL},g_{NL}}{k^2} \times \text{constant} \]

impossible to generate with single field inflation!

e.g. Creminell, D’Amico, Musso, Noreña 2011

Smith, Ferraro, ML 2011

(Desjacques and Seljak 2010; Desjacques, Jeong, Schmidt 2011; Scoccimarro et al 2012)
SCALE-DEPENDENT HALO-BIAS

local non-Gaussianity

\[\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle) + g_{NL} (\Phi_G(x)^3 - \Phi_G \langle \Phi_G^2 \rangle) \]

\[b_{f_{NL},g_{NL}}(k) \sim b + \frac{f_{NL},g_{NL} \times \text{constant}}{k^2} \]

impossible to generate with single field inflation!

e.g. Creminell, D’Amico, Musso, Noreña 2011

observational systematics may be hard!

precise values of \(f_{NL}, g_{NL}\) will require care -- but seeing \(1/k^2\) is the most exciting part

Smith, Ferraro, ML 2011

(Desjacques and Seljak 2010; Desjacques, Jeong, Schmidt 2011; Scoccimarro et al 2012)
SCALE-DEPENDENT HALO-BIAS

Figure 1: Halo bias $b_m(k)$ for selected redshifts and halo mass bins, estimated from N-body simulations as described in Appendix A. The curves are the predicted form in Eq. (27), with b_0 treated as a free parameter which is fit from data.

$scales \text{ as } 1/k^2$

Dalal, Doré, Huterer, Shirokov 2007
Smith, ML 2010 Smith, Ferraro, ML 2011
Pillepich, Porciani, Hahn 2008; Desjacques, Seljak, Iliev 2008; Grossi et al 2009
Shandera, Dalal, Huterer 2010
(Desjacques and Seljak 2010; Desjacques, Jeong, Schmidt 2011; Scoccimarro et al 2012)
bias coefficient for g_{NL} in terms of mass

$$b_{gNL}(k) = b + \frac{3g_{NL} \partial \ln \nbar(M)}{k^2} \frac{\partial f_{NL}}{\partial f_{NL}}$$

contrast w/f_{NL} where coefficient in terms of bias

$$b_{fNL}(k) = b + \frac{2 \delta_c f_{NL} (b-1)}{k^2}$$
bias coefficient for g_{NL} in terms of mass

$$b_{gNL}(k) = b + \frac{3g_{NL} \partial \ln n(M)}{k^2} \frac{\partial f_{NL}}{\partial f_{NL}}$$

contrast w/f$_{NL}$ where coefficient in terms of bias

$$b_{fNL}(k) = b + \frac{2 \delta_c f_{NL} (b-1)}{k^2}$$

we have a fit for g_{NL} in terms of bias:

$$b_{gNL}(k) \sim b + g_{NL} \frac{\text{non-linear function}(b)}{k^2}$$

form will depend on selection of population in M, z
bias coefficient for g_{NL} in terms of mass

contrast w/f NL where coefficient in terms of bias $b_{gNL}(k) = b + g_{NL}$

we have a fit for g_{NL} in terms of bias:

\[b_{gNL}(k) \sim b + g_{NL} \quad \text{non-linear function}(b) \quad k^2 \]

form will depend on selection of population in M, z

but! exact $1/k^2$ not necessarily expected!

Smith, Ferraro, ML 2011
SCALE-DEPENDENT HALO-BIASES

generalized local ansatz

\[\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim \xi_\sigma(k_S)k_S^{-3}k_L^{-3} \]

\[\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim \xi_{\sigma\varphi}(k_S)\xi_{\sigma\varphi}(k_L)k_S^{-3}k_L^{-3} \]

Shandera, Dalal, Huterer 2010
More precisely, in terms of the Gaussian Eulerian bias

\[\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim \xi_\sigma(k_S)k_S^{-3}k_L^{-3} \]

\[\langle \Phi(k_S)\Phi(-k_S-k_L)\Phi(k_L) \rangle \sim \xi_{\sigma\varphi}(k_S)\xi_{\sigma\varphi}(k_L)k_S^{-3}k_L^{-3} \]

\[\xi(k) \sim k^{\text{slow-roll}} \]

\[f_{\text{NL}}(M) \sim \xi_{\sigma\varphi}(k_S)\xi_\sigma(k_S) \]

\[b(k) \sim \xi_{\sigma\varphi}(k)k^{-2} \sim k^{-2+\text{slow-roll}} \]

Left panel

- Blue short dashed: single-field, \(n_f^{(s)} = +0.6 \)
- Blue long dashed: single-field, \(n_f^{(s)} = -0.6 \)
- Red short dashed: multi-field, \(n_f^{(m)} = +0.3 \)
- Red long dashed: multi-field, \(n_f^{(m)} = -0.3 \)

Right panel

- Black: Local ansatz
- Blue dashed: single-field, \(n_f^{(s)} = +0.6 \)
- Red dashed: multi-field, \(n_f^{(m)} = +0.3 \)
- Pink dashed: multi-field, \(n_f^{(m)} = -0.3 \)

Figure 1

- Case of constant local non-Gaussianity

For example, Giannantonio and Porciani

There is an additional factor multiplying the expression above for the correction to the bias of objects of mass \(x \) that increases on small scales with a function of the object's mass for two modifications of the local ansatz.

The blue short dashed curve is the single-field model with the multipfield scenario with.

These combine into the mass-dependent coefficient

\[k \sim (\rho/M)^{1/3} \]
SCALE-DEPENDENT HALO-BIAS

quasi-single field models?

\[\langle \Phi(k_{S})\Phi(-k_{S}-k_{L})\Phi(k_{L}) \rangle \sim \langle P_{\Phi}(k_{S})\Phi(k_{L}) \rangle \sim f_{NL} \, k_{S}^{-3} \, k_{L}^{-3} \left(\frac{k_{L}}{k_{S}} \right)^{3/2-v} \]

\[f_{NL}(M) \sim f_{NL} \, k_{S}^{-3/2+v} \]

\[k_{S} \sim (\rho/M)^{1/3} \]

\[b(k) \sim k^{-2+3/2-v} \]

\[0 \leq v \leq 3/2 \]
MORE:

scale-dep bias only probes a particular configuration of bispectrum (or higher)

"squeezed" limit

\(k_s \)

\(k_s - k_L \)

\(k_L \)

and, it’s one that vanishes in single-field models
MORE:

scale-dep bias only probes a particular configuration of bispectrum (or higher)

"squeezed" limit

and, it's one that vanishes in single-field models

FULL bispectrum, trispectrum sensitive to more general models, contains more information

\[B(k_1, k_2, k_3) \quad T(k_1, k_2, k_3, k_4) \]
Summary

- Lots of different kinds of non-Gaussian initial conditions
- Qualitatively different shapes & scalings of non-Gaussianity from qualitatively different models
- Halo abundance sensitive to local statistics of δ_M
- Halo clustering (scale-dep bias) probes squeezed limits of bispectrum, trispectrum -- power to rule out single-field inflation
- Analytic description for the halo mass function looks good compared with N-body so far
- Analytic descriptions of halo bias agree well with sims
First theory breakout session summary:

scale-dep bias only probes a particular configuration of bispectrum (or higher)

Every bispectrum has a squeezed limit
It just might be very small.....

Seeing anything in scale-dep. bias/squeezed limit is indicative of new physics incredibly exciting

the current limits are already interesting
First theory breakout session summary:

Since every bispectrum (i.e. models other than f_{NL} local) has a squeezed limit, scale dependent bias constrains a broad space of theories.

However, scale-dependent bias in other theories will not have the usual form: $b_0 + 2\delta_c \ f_{NL}(b_0-1)/k^2$

more powerful to fit:

$$b(k) = b_0 + f(M)/k^\alpha$$

where $f(M)$ is a function of mass (that can be calculated from a non-Gaussian model) that is proportional to the amplitude of non-Gaussianity (e.g. f_{NL}, g_{NL}) and it’s probably safe to assume $0 \leq \alpha \leq 3$

special values of α:

$0 \leq \alpha \leq 2$: quasi-single-field
$\alpha = 2$: exact local model (f_{NL}, g_{NL})
$\alpha = 2 \pm \varepsilon$: two fields contributing to primordial perturbations
$\alpha = 3$: modified initial state
First theory breakout session summary:

AGAIN, seeing anything in scale-dep. bias/squeezed limit is indicative of new physics incredibly exciting

A detection would mean there are other signatures to go after and help distinguish between models

the current limits are already interesting

There are non-Gaussian models that have vanishingly small squeezed limits (and therefore vanishingly small scale-dep bias) BUT detectably large signals in other, non-squeezed configurations. SO we should continue to explore other observables (e.g. galaxy bispectrum in non-squeezed configurations)