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Flatland?

• Most of my time will be spent discussing the 
physics of inflation in 2+1 dimensions.

• Gravity is particularly simple in 2+1 
dimensions; there are no local gravitational 
degrees of freedom — corresponds to no 
tensor modes in inflation (Deser, Jackiw, ’t Hooft)

• The primary thing of interest is the relationship between cosmological 
adiabatic modes and asymptotic symmetries of de Sitter space

• Asymptotic symmetry algebra of 3d de Sitter space is well-known, and is 
very simple: two copies of the Virasoro algebra (Brown, Henneaux; 
Strominger)

• Another motivation: the scalar consistency relations in 3+1 dimensions can 
be traced back to the conformal symmetries of spatial slices, in 2+1 
dimensions, this is infinite-dimensional



Soft theorems
• The primary motivation for this type of investigation is to get a better 

understanding of soft theorems in cosmology 

• Soft theorems are ubiquitous in theories with non-linearly realized 
symmetries

e.g.,  Adler’s zero in pion physics: lim
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Double-soft limit here is particularly interesting

• Also play an important role in gauge theories (e.g., Weinberg’s soft graviton 
theorem)

+ + · · · =pp ⇥
X

i

±gi k
µ1
i kµ2

i

ki · p

These identities have recently been understood as consequences of 
asymptotic symmetries in flat space (Strominger +many others)



Soft limits in cosmology (in 3+1d)
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• Squeezed limits of cosmological correlators are related to symmetry-
transformed lower-point functions

• e.g., Maldacena’s consistency relation

• These relations follow from symmetry, but to turn symmetry statements 
into correlator statements requires some assumptions



• Hold in models of inflation satisfying technical assumptions:

• These relations are sharp null-tests, and violations of them can be striking 
signatures of new physics (example: Quasi-single field inflation)
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Soft limits in cosmology (in 3+1d)

• there is only a single clock (roughly, single field)

• modes start in the Bunch-Davies vacuum

•    goes to a constant at long wavelengths⇣

(Chen, Wang; 
Akrani-Hamed, 
Maldacena)



Standard derivation:  “adiabatic modes”

• We are working in the context of a homogeneous FLRW background 
cosmology

ds2 = �dt2 + a

2(t)d~x2

which we imagine is sourced by a scalar field for simplicity

• We now want to perturb both the metric and the scalar and study the 
perturbations

• In order to do this, we typically have to fix a gauge, a convenient choice is 
to use ADM variables

ds2 = �N

2dt2 + hij(dx
i +N

idt)(dxj +N

jdt)

and fix the spatial metric to be hij = a2(t)e2⇣ (e�)ij

along with leaving the scalar unperturbed �� = 0

• Standard procedure: solve for lapse and shift, plug back in to the action to 
get an action for only     and        ⇣ �



Standard derivation:  “adiabatic modes”

• Even after gauge-fixing, there are always residual “large gauge 
transformations” which act as genuine symmetries

hij = a2(t)e2⇣ (e�)ij

• Setting the tensors to zero for the time being, there are residual diffs:
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these should be symmetries of the gauge-fixed action



Adiabatic modes
• Actually, that is a bit too quick — there are constraint equations in GR 

and these diffs will not in general induce the correct lapse and shift

N (1) =
⇣̇

H
N

(1)
i = � 1

H
@i⇣ +

a2✏

c2s

@i
r2

⇣̇

• Demanding that these equations are preserved by a diff:
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• Interpretation: large diffs are inducing k = 0 profiles for     , the adiabatic 
mode condition ensures that these profiles are the zero momentum limit 
of a physical profile that solves the Einstein equations — similar story for 
tensors

⇣

(Weinberg; Creminelli, Norena, Simonovic; 
Hinterbichler, Hui, Khoury)



From adiabatic modes to soft theorems

• Adiabatic modes are physical profiles that can be introduced by a 
diffeomorphism

• A local observer should not be able to tell whether or not they are in such 
a long-wavelength background

• A correlation function in the presence of a soft mode is related to a 
correlator without the soft mode, but in transformed coordinates

• This leads to the inflationary soft theorems (can also be derived as Ward 
identities employing standard machinery)

h⇣(x1) · · · ⇣(xn)i⇣L = h⇣(x̃1) · · · ⇣(x̃n)i



To three dimensions



Inflation in three dimensions

Some predictions:

•                    (there are no local graviton perturbations)r = 0

• You can’t step over stuff…

Nevertheless, it is an illuminating theoretical playground, so let’s continue

X



Adiabatic modes in 2+1

• We would like to repeat the adiabatic mode construction in 3d, convenient 
to use complex coordinates

hij = e2⇣ (e�)ij• The gauge choice                       for the spatial metric is preserved by any 
harmonic diff.    
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• Harmonic functions can be split into holomorphic and anti-holomorphic 
parts

⇠i = f i(z, ⌘) + ḡi(z̄, ⌘)

• With general time dependence, these transformations will not satisfy the 
constraint equations, this restricts time dependence

⇠z(z, ⌘) = �zn+1 , ⇠z̄(z, ⌘) = �n(n+ 1)zn�1

Z 0

⌘

d⌘0

aH

• There is also another type of allowed transformation: ⇠z = ḡz(z̄)

we’ll come back to these.

z 7! z + ⇠z z̄ 7! z̄ + ⇠z̄



Adiabatic puzzles

• This adiabatic mode condition is kind of puzzling — any residual 
diffeomorphism formally should be a symmetry of the gauge-fixed action

• Why are we forced to restrict these diffeomorphisms by imposing the 
adiabatic mode condition? Basically forces diffs. to induce physical modes

• It would be nice to think about this in a different way, hopefully to connect 
to something more fundamental

• There has been a lot of work on flat space soft theorems and their 
connections to asymptotic symmetries, is there a similar story here?



• Asymptotic symmetries: the group of diffeomorphisms which preserve the 
asymptotic structure of the theory (some boundary conditions)

• E.g. in flat space for gravity, the asymptotic symmetry group is the set 
of all diffeomorphisms which preserve the structure at null infinity, 
form the BMS group

Asymptotic symmetries

• The group that you get depends on the boundary conditions that you 
demand, there is no unique asymptotic symmetry group

• We will find that the adiabatic mode transformations that we just derived 
agree precisely with the asymptotic symmetries of dS3



Asymptotic symmetry group of 

• It is convenient to write de Sitter in terms of complex 
coordinates

ds2 =
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• Ask for all diffeomorphisms which preserve the boundary conditions 
(Brown-Henneaux)
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• To get the asymptotic symmetry group we impose some boundary 
conditions at temporal infinity (⌘ ! 0)



Asymptotic symmetry group of dS3

• Most general diff. which does this is of the form (Strominger)
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plus an independent thing where everything is conjugated
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there is also an anti-holomorphic copy, two copies of Witt algebra, which 
gets centrally extended to 2 Virasoros

these satisfy the algebra



• These are the same vector fields as the ones which generate adiabatic 
modes!

• However, do not reproduce the “tensor” adiabatic modes — these 
require different boundary conditions

Asymptotic symmetry group of dS3
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• Asymptotic symmetries

• Recall adiabatic modes
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• After doing one of these diffeomorphisms, the line element looks like

• This is a physically distinct configuration, differing by insertions of soft 
gravitons

Interpretation

• Like spontaneous symmetry breaking, we are mapped to an equivalent 
vacuum

• This connects with the adiabatic mode condition, asymptotic symmetries 
are naturally the transformations that introduce physical long-wavelength 
modes



Action on the curvature perturbation
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How do these symmetries act on the inflationary curvature perturbation?

• If zeta is a function of just z, this metric is asymptotically dS (after 
coordinate transformations)
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Consider the perturbed metric

• We know the adiabatic modes, so we could work this out using 
standard techniques, but it is interesting to see directly from the 
asymptotic symmetry perspective.



• A symmetry       inserts a profile of the form`n ⇣ ⇠ zn
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• In terms of Cartesian coordinates, these symmetries look like
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Action on the curvature perturbation
• This is precisely of the form that can be induced by an asymptotic 

symmetry transformation

• These transformations for     are symmetries of the gauge-fixed action, 
should have corresponding soft theorems

• Note that there is an infinite number of scalar symmetries, in contrast 
to higher dimensions
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Soft-      Theorems

The nonlinearly realized symmetries lead to Ward identities relating (N+1) and 
N-point functions.

• Explicitly this takes the form
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• Simplest one that has no direct higher-dimensional analogue (n=2 relating 3 
and 2 point function)
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A check

• In order to explicitly check this relation, it is convenient to use EFT 
of inflation formalism (Creminelli et al.; Cheung et al.)
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Conclusions

• Asymptotic symmetries and scalar adiabatic modes seem to be in one-
to-one correspondence (at least in this simplified setting)

• It would be nice to make this same kind of explicit connection in 3+1 
dimensions

• 3d inflation provides a nice simplified setting to explore many issues; 
correlation functions satisfy an infinite number of soft theorems 
involving only the scalar perturbation

• There should be a dual CFT derivation/interpretation of these results, 
along with extension to multi-field scenarios

• “Tensor” adiabatic modes seem to require less stringent boundary 
conditions, would be nice to understand what these are. More generally, 
it is not clear how adiabatic modes pick out preferred BCs


