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Preface	

Primary	focus	of	this	talk:	gravita'onal	waves	from	the	
electroweak	phase	transi'on		

(I’ll	comment	on	some	other	PT	scenarios	not	related	to	
electroweak	symmetry	breaking	as	well)	
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Most	of	this	talk	based	on	work	with	members	of	LISA	Cosmology	Working	Group:	

Caprini,	JK	et	al,	JCAP	1604	(2016)	no.04,	001		



Mo%va%on	

The	standard	picture	of	electroweak	symmetry	breaking:	
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At	high	temperatures,	a	background	field	with	electroweak	
quantum	numbers	stabilized	at	the	origin			

�
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Mo%va%on	

The	standard	picture	of	electroweak	symmetry	breaking:	
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At	zero	temperature,	the	background	field	is	stabilized	away	
from	the	origin	and	EW	symmetry	is	broken			

�

Ve�(�)



Mo%va%on	

What	happened	in	between?	
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First	or	second	order	transi%on?	At	what	temperature?	Other	
fields	involved?	…	
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??	



Mo%va%on	

The	SM	features	a	smooth	cross-over	
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Kajan%e	et	al,	hep-ph/9605288	



Mo%va%on	

Scenarios	beyond	the	SM	can	instead	accommodate	a	first		

order	EWPT	
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Mo%va%on	
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• 	First	order	PT	can	allow	for	successful	electroweak	baryogenesis	

Understanding	the	electroweak	phase	transi%on	is	important!	
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• 	First	order	PT	can	allow	for	successful	electroweak	baryogenesis	

Understanding	the	electroweak	phase	transi%on	is	important!	
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h�i 6= 0

h�i = 0
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• 	First	order	PT	can	allow	for	successful	electroweak	baryogenesis	

Understanding	the	electroweak	phase	transi%on	is	important!	
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• 	First	order	PT	can	allow	for	successful	electroweak	baryogenesis	

Understanding	the	electroweak	phase	transi%on	is	important!	
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“Non-local	EWB”	
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• 	First	order	PT	can	allow	for	successful	electroweak	baryogenesis	

Understanding	the	electroweak	phase	transi%on	is	important!	

B 6= 0

�B = 0/

/�B 6= 0

f, f̄

h�i 6= 0

B/
“Non-local	EWB”	
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• 	First	order	PT	can	allow	for	successful	electroweak	baryogenesis	

• 	Can	affect	cosmology	(e.g.	the	abundance	of	thermal	relics)	

Understanding	the	electroweak	phase	transi%on	is	important!	

See	e.g.	Profumo	+	Wainwright,	0909.1317	
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• 	First	order	PT	can	allow	for	successful	electroweak	baryogenesis	

• 	Can	affect	cosmology	(e.g.	the	abundance	of	thermal	relics)	

• 	We	should	understand	where	we	are	on	the	EW	phase	diagram	

Understanding	the	electroweak	phase	transi%on	is	important!	

See	e.g.	Profumo	+	Wainwright,	0909.1317	
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How	might	we	test	for	a	strong	first-order	(electroweak)	phase		

transi%on	in	our	past?	

Two	arenas:	gravita'onal	wave	astronomy	and	colliders		
(This	talk)	 (Ask	me	later!)	



Gravita%onal	Waves	from	Strong	PTs	
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A	first-order	cosmological	phase	transi%on	can	source	a		

stochas%c	gravita%onal	wave	background	in	different	ways:	

• Bubble	Collisions	

• Sound	Waves	

• Turbulence	
h�i 6= 0 h�i 6= 0
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Various	contribu%ons	to	the	gravita%onal	wave	spectrum		

depend	on	the	phase	transi%on	proper%es	

Bubble	Collisions:	

couplings to the thermal bath, then the bubble walls move relativistically in what is known

as a vacuum transition.

Thermal PTs, in which the scalar field is coupled to a plasma of light fields, typically

involve slower wall velocities due to the e↵ective friction term coupling the field to the

plasma [8]. It is, however, still possible to get luminal wall velocities [9]. For thermal PTs, if

velocities are subsonic vw < 1/
p
3, a shock forms in the plasma in front of the bubble wall;

if velocities are supersonic vw > 1/
p
3, a rarefaction wave forms behind the bubble wall.

The spectrum of the stochastic GW background arising from cosmological PTs depends

on various sources. These are outlined in Section 2.1. Which sources are most relevant in a

given PT scenario depends sensitively on the dynamics of bubble expansion. We discuss the

various possibilities in Section 2.2.

2.1 Contributions to the Gravitational Wave Spectrum

To varying degrees, three processes are involved in the production of GWs at a first-order

PT:

• Collisions of bubble walls and (where relevant) shocks in the plasma. This can be treated

by a technique now generally referred to as the ‘envelope approximation’ [10–15]. As

described below, this approximation can be used to compute the contribution to the

GW spectrum from the scalar field, �, itself.

• Sound waves in the plasma after the bubbles have collided but before expansion has

dissipated the kinetic energy in the plasma [16–19].

• Magnetohydrodynamic (MHD) turbulence in the plasma forming after the bubbles have

collided [20–25].

These three processes generically coexist, and the corresponding contributions to the stochas-

tic GW background should linearly combine, at least approximately, so that

h2⌦GW ' h2⌦� + h2⌦sw + h2⌦turb . (6)

Let us briefly review each contribution in more detail.

2.1.1 Scalar Field Contribution

The GW contribution from the scalar field involved in the PT can be treated using the

envelope approximation. In this approximation, a fraction  of the latent heat of the PT

6

is deposited in a thin shell close to the PT front. The energy in each shell is then as-

sumed to quickly disperse after colliding with another shell such that the energy is primarily

stored in the envelope of uncollided shells 3. Numerical simulations utilizing the envelope

approximation suggest that the GW contribution to the spectrum is given by [15]

h2⌦env(f) = 1.67⇥ 10�5

✓
H⇤

�

◆2 ✓ ↵

1 + ↵

◆2 ✓100

g⇤

◆ 1

3

✓
0.11 v3w

0.42 + v2w

◆
Senv(f) , (7)

where Senv(f) parametrises the spectral shape of the GW radiation. A fit to simulation

data [15] yields

Senv(f) =
3.8 (f/fenv)2.8

1 + 2.8 (f/fenv)3.8
, (8)

with the slopes of the spectrum in the limit of small and large frequencies given respectively

by Senv / f q with q = 2.8 and Senv / f�p with p = 1. Causality implies that at low

frequency the spectral index is q = 3 [27]. This has to be the case at least for frequencies

smaller than the inverse Hubble horizon at GW production, Eq. (11). However, q = 2.8

provides a better fit to the simulated result close to the peak of the spectrum and we adopt

this spectral index in the following.

The peak frequency of the contribution to the spectrum from bubble collisions, fenv, is

determined by the characteristic time-scale of the PT, i.e. its duration 1/� [24, 27]. From

simulations, the peak frequency (at t⇤) is approximately given by [15]

f⇤
�

=

✓
0.62

1.8� 0.1vw + v2w

◆
. (9)

This value is then red-shifted to yield the peak frequency today,

fenv = 16.5⇥ 10�3 mHz
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⌘ 1

6

. (10)

In going from Eq. (9) to Eq. (10) we use the value of the inverse Hubble time at GW

production, redshifted to today,

h⇤ = 16.5⇥ 10�3 mHz

✓
T⇤

100GeV

◆⇣ g⇤
100

⌘ 1

6

(11)

along with the assumption that the Universe transitioned directly to a radiation-dominated

phase after the PT and has expanded adiabatically ever since.

3The envelope approximation we adopt here neglects the fact that the scalar field can perform oscillations

as it settles into the true vacuum after wall collisions, as demonstrated e.g. in [26].

7

Bubble	wall	velocity	

Dura%on	of	the	PT	 Latent	heat	

Efficiency	factor	

Frequency	dependence	

to detect a stochastic GW background arising from a first-order PT. As we will see, our

conclusions in this regard depend quite sensitively on the experimental configuration. For

a more detailed discussion on the status of the eLISA mission and its possible designs, we

refer the reader to the first paper of this series [3].

The remainder of this study is structured as follows. We provide an overview of GW

generation at a first-order cosmological PT in Section 2. Model-independent projections of

the eLISA sensitivity to such signals are presented in Section 3. We then discuss several

specific examples of models predicting strong GW signatures through a first-order PT in

Section 4, either associated with electroweak symmetry breaking (Section 4.2) or otherwise

(Section 4.3). Section 5 comprises a summary and our conclusions. Some additional details

of our analysis are provided in Appendix A.

1.1 Definitions and Notation

Before proceeding, we comment briefly on our notation, which generally coincides with that

found in e.g. Ref. [4], and identify the quantities important for computing the GW signal

from cosmological PTs.

In what follows, T⇤ denotes the temperature of the thermal bath at the time t⇤ when GWs

are produced. For typical transitions without significant reheating, this is approximately

equivalent to the nucleation temperature, T⇤ ⇡ Tn. For the remainder of this section we

assume that this is the case, deferring the treatment of scenarios with large reheating e↵ects

to Section 2.2.3. The bubble nucleation rate is

�(t) = A(t)e�S(t) , (1)

where S is the Euclidean action of a critical bubble1. Tn is then defined as the temperature

at which � becomes large enough to nucleate a bubble per horizon volume with probability

of order 1.

In terms of �(t), the (approximate) inverse time duration of the PT is defined as

� ⌘ � dS

dt

����
t=t⇤

' �̇

�
. (2)

1In principle, there are many solutions to the Euclidean equations of motion that can contribute to the

action. In practice, only the solution with the lowest action is relevant. For vacuum transitions, this is the

O(4)-symmetric solution, with Euclidean action S4, while at finite temperature, O(3)-symmetric bounce is

the relevant solution, with Euclidean action S3/T . Then at a given time, S(t) ⇡ min{S4, S3/T}.

4
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Various	contribu%ons	to	the	gravita%onal	wave	spectrum		

depend	on	the	phase	transi%on	proper%es	

Bubble	Collisions:	

Sound	Waves:	

Turbulence:	

couplings to the thermal bath, then the bubble walls move relativistically in what is known

as a vacuum transition.

Thermal PTs, in which the scalar field is coupled to a plasma of light fields, typically

involve slower wall velocities due to the e↵ective friction term coupling the field to the

plasma [8]. It is, however, still possible to get luminal wall velocities [9]. For thermal PTs, if

velocities are subsonic vw < 1/
p
3, a shock forms in the plasma in front of the bubble wall;

if velocities are supersonic vw > 1/
p
3, a rarefaction wave forms behind the bubble wall.

The spectrum of the stochastic GW background arising from cosmological PTs depends

on various sources. These are outlined in Section 2.1. Which sources are most relevant in a

given PT scenario depends sensitively on the dynamics of bubble expansion. We discuss the

various possibilities in Section 2.2.

2.1 Contributions to the Gravitational Wave Spectrum

To varying degrees, three processes are involved in the production of GWs at a first-order

PT:

• Collisions of bubble walls and (where relevant) shocks in the plasma. This can be treated

by a technique now generally referred to as the ‘envelope approximation’ [10–15]. As

described below, this approximation can be used to compute the contribution to the

GW spectrum from the scalar field, �, itself.

• Sound waves in the plasma after the bubbles have collided but before expansion has

dissipated the kinetic energy in the plasma [16–19].

• Magnetohydrodynamic (MHD) turbulence in the plasma forming after the bubbles have

collided [20–25].

These three processes generically coexist, and the corresponding contributions to the stochas-

tic GW background should linearly combine, at least approximately, so that

h2⌦GW ' h2⌦� + h2⌦sw + h2⌦turb . (6)

Let us briefly review each contribution in more detail.

2.1.1 Scalar Field Contribution

The GW contribution from the scalar field involved in the PT can be treated using the

envelope approximation. In this approximation, a fraction  of the latent heat of the PT
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is deposited in a thin shell close to the PT front. The energy in each shell is then as-

sumed to quickly disperse after colliding with another shell such that the energy is primarily

stored in the envelope of uncollided shells 3. Numerical simulations utilizing the envelope

approximation suggest that the GW contribution to the spectrum is given by [15]
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where Senv(f) parametrises the spectral shape of the GW radiation. A fit to simulation

data [15] yields

Senv(f) =
3.8 (f/fenv)2.8

1 + 2.8 (f/fenv)3.8
, (8)

with the slopes of the spectrum in the limit of small and large frequencies given respectively

by Senv / f q with q = 2.8 and Senv / f�p with p = 1. Causality implies that at low

frequency the spectral index is q = 3 [27]. This has to be the case at least for frequencies

smaller than the inverse Hubble horizon at GW production, Eq. (11). However, q = 2.8

provides a better fit to the simulated result close to the peak of the spectrum and we adopt

this spectral index in the following.

The peak frequency of the contribution to the spectrum from bubble collisions, fenv, is

determined by the characteristic time-scale of the PT, i.e. its duration 1/� [24, 27]. From

simulations, the peak frequency (at t⇤) is approximately given by [15]
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In going from Eq. (9) to Eq. (10) we use the value of the inverse Hubble time at GW

production, redshifted to today,

h⇤ = 16.5⇥ 10�3 mHz
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along with the assumption that the Universe transitioned directly to a radiation-dominated

phase after the PT and has expanded adiabatically ever since.

3The envelope approximation we adopt here neglects the fact that the scalar field can perform oscillations

as it settles into the true vacuum after wall collisions, as demonstrated e.g. in [26].
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The envelope approximation can be readily applied to the GW contribution arising from

the scalar field itself,

h2⌦�(f) = h2⌦env(f)
��
=�

, (12)

where � denotes the fraction of latent heat transformed into the kinetic energy of the scalar

field. Its size depends on the details of the bubble expansion, as we discuss in Section 2.2.

2.1.2 Sound Waves

Percolation produces bulk motion in the fluid in the form of sound waves. Acoustic produc-

tion of GWs is an area of active research, and a definitive model covering all relevant vw and

↵ is not yet available [16, 19]. For generic values of vw (meaning values more than about

10% away from the sound speed or the speed of light), the numerical results of [19] are fitted

reasonably by

h2⌦sw(f) = 2.65⇥ 10�6

✓
H⇤

�

◆✓
v↵

1 + ↵

◆2 ✓100

g⇤

◆ 1

3

vw Ssw(f) , (13)

where the e�ciency v denotes the fraction of latent heat that is transformed into bulk

motion of the fluid, and depends on the expansion mode of the bubble (see Section 2.2).

The numerical simulations performed in Ref. [19] indicate that the contribution from

acoustic production can be modelled by a broken power law, with the causal slope q = 3

for values of the frequency below the peak frequency, and a power law �p above the peak,

with p & 3. It can be shown that the signal-to-noise ratios for GW detection are rather

insensitive to the precise value of p if it is greater than 3. For the purposes of this analysis

we take p = 4. We adopt the following spectral shape Ssw(f) in Eq. (13):

Ssw(f) = (f/fsw)
3

✓
7

4 + 3 (f/fsw)2

◆7/2

. (14)

The peak frequency fsw is not yet well understood. The overall scale is set by the

average bubble separation R⇤ = (8⇡)
1

3vw/�, but the peak position is found numerically to

be less than R⇤. A conservative estimate that complies with the above spectral shape is

fsw = (2/
p
3)(�/vw), which, after redshifting, becomes

fsw = 1.9⇥ 10�2 mHz
1

vw

✓
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◆✓
T⇤

100GeV

◆⇣ g⇤
100

⌘ 1

6

. (15)

The parametric dependence of the GW spectrum in Eq. (13) di↵ers by a factor �/H⇤

with respect to the envelope result in Eq. (7). The enhancement of the spectral amplitude by

8

a factor �/H⇤ for long-lasting sources w.r.t to short lasting ones has been predicted on the

basis of analytical arguments in Ref. [24]. Simulations show that the sound waves typically

remain active as a source of GW much longer than the collisions of the bubble walls [19]. We

therefore believe that the �/H⇤ factor is tied to the duration of the source, and is robust. The

same amplification is observed in the case of MHD turbulence which is also a long-lasting

source (it takes several Hubble times to dissipate [24]).

We emphasize that the simulations used to arrive at Eqs. (13)–(15) were restricted to

values of ↵ . 0.1 and the maximum root mean square fluid velocity
p
↵v was about

0.05. The extent to which the results of these simulations can be extrapolated to larger ↵

remains to be investigated. In particular, we expect that the development of weak shocks at

tsh ⇠ (vw/
p
↵v)��1 (see e.g. [28]) will eventually convert the acoustic signal to a turbulent

one, described in the next section. We urge the Reader to keep this in mind when interpreting

our results below.

2.1.3 MHD Turbulence

Percolation can also induce turbulence in the plasma, and in particular MHD turbulence

since the plasma is fully ionized. The contribution of MHD turbulence to the GW spectrum

in Eq. (19) can be modelled as 4 [5, 24]

h2⌦turb(f) = 3.35⇥ 10�4

✓
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�
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turb ↵

1 + ↵

◆ 3

2

✓
100

g⇤

◆1/3

vw Sturb(f) , (16)

where turb denotes the fraction of latent heat that is transformed into MHD turbulence

(note the di↵erent dependence on this parameter w.r.t to the sound wave and scalar field

cases). Similarly to the case of sound waves, one recognizes the amplification by a factor

�/H⇤ which is typical of sources that last longer than the average duration 1/� of the PT.

The spectral shape has been found analytically and is given by [5, 24]

Sturb(f) =
(f/fturb)3

[1 + (f/fturb)]
11

3 (1 + 8⇡f/h⇤)
. (17)

The explicit dependence on the Hubble rate h⇤ (c.f. Eq. (11)) is also a consequence of the

fact the turbulence acts as a source of GW for several Hubble times. The causal slope

4Note that MHD turbulence after a primordial PT can also be helical, as pointed out e.g. in Ref. [22].

Here we neglect the GW signal from a possible helical component, which in the context of eLISA will be the

subject of a subsequent study.

9
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Which	contribu%ons	dominate	depends	on	the	PT	dynamics	

Three	general	scenarios:	

	1.	Non-runaway	bubbles	

	2.	Runaway	bubbles	in	plasma	

	3.	Runaway	bubbles	in	vacuum	

When	considering	specific	BSM	scenarios,	it’s	important	to	know	which	applies!	

��⇥ = 0 ⇥�⇤ �= 0

Friction �VT=0

vw

Figure 1. Illustration of the competing forces acting on the bubble wall that ultimately determine
vw. The steady state wall velocity is such that the vacuum energy di�erence between the phases
(�VT=0) is balanced by the friction provided by the interactions of the wall with the plasma.

and solve for T+ in terms of Tn, vw. Previous studies suggest that using the planar approxi-
mation instead of the full solutions to the spherical hydrodynamic equations can reproduce
the full result for the wall velocity to within a few percent [75].

With the temperature T+ and the static properties of the phase transition determined
in this way, we can now consider the asymptotic behavior of the bubble after its formation.

3.3 Wall Equations of Motion

The main object for our analysis will be the bubble wall equations of motion correspond-
ing to the set of scalar fields ⇤i = ⇤h,⇤s. These can be derived by requiring conservation
of the energy-momentum tensor for the scalar field condensates computed in a WKB ap-
proximation [70], or directly from the Kadano�-Baym equations [47]. We are interested in
the stationary limit of the equations of motion in the plasma frame; that is, we want to
investigate the bubble wall once it has reached its terminal velocity (if it exists), with the
pressure driving the expansion precisely counterbalanced by the drag force exerted on the
bubble by the plasma. This is illustrated in Fig. 1.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ⇥ z+vwt,
where vw is the wall velocity in the plasma frame and we have assumed that the wall is
moving to the left. In the stationary wall limit, the equations of motion then simplify to

�(1� v2w)⇤
��
i +

⌅V (⇤i, T )

⌅⇤i
+
�

j

⌅m2
j (⇤i)

⌅⇤i

⇥
d3p

(2⇥)32Ej
�fj(p, x) = 0 (3.9)

where primes indicate di�erentiation with respect to x. Here the sum is over all fields
coupling to the scalar field ⇤i, Ej is the (space-time–dependent) energy of the particle j,
Ej =

⇤
p2 +m2

j (x), and �fj is the deviation from the equilibrium distribution function for
the species j.

– 12 –

2.2.1 Case 1: Non-runaway Bubbles

Bubbles expanding in a plasma can reach a relativistic terminal velocity. In this case, the

energy in the scalar field is negligible (it only scales with the surface of the bubble and not

with the volume) and the most relevant contributions to the signal are expected to arise

from the bulk motion of the fluid. This can be in the form of sound waves and/or MHD

turbulence. Combining these contributions, we approximate the total spectrum as

h2⌦GW ' h2⌦sw + h2⌦turb . (19)

As shown in the previous sections, these expressions involve v, the e�ciency factor for

conversion of the latent heat into bulk motion [8, 13]. In the limits of small and large vw, it

is approximately given by

v '
(

↵ (0.73 + 0.083
p
↵ + ↵)

�1
vw ⇠ 1

v6/5w 6.9↵ (1.36� 0.037
p
↵ + ↵)

�1
, vw . 0.1

(20)

Full expressions for v are given in Ref. [8], which we utilize below (note that v is called 

in Ref. [8]).

The GW spectra also depend on vw, which is model-dependent. We choose vw = 0.95

for concreteness, since scenarios with nearly luminal wall velocities are more promising from

the standpoint of observable gravitational radiation.

In the GW contribution from MHD turbulence, Eq. (16), we take

turb = ✏ v , (21)

with ✏ representing the fraction of bulk motion which is turbulent. Recent simulations

suggest that only at most 5 � 10% of the bulk motion from the bubble walls is converted

into vorticity (cf. e.g. Table II in [19]). However, these simulations lasted for less than

one eddy turn-over time so one would not expect significant turbulence to have developed.

The onset of turbulence is expected after shocks develop at tsh ⇠ (vw/
p
↵v)��1, which is

less than a Hubble time for stronger transitions. More work is needed to understand how

turbulence develops from the acoustic waves, and to allow for the uncertainty in what follows

we conservatively set ✏ = 0.05. This strongly suppresses the role of turbulence as far as the

detection of GW from the PT is concerned, thereby underestimating the signal in the case

that weak shocks develop within one Hubble time. As we will see, turbulence can only

slightly improve the signal-to-noise ratio in extreme cases for which the PT is very slow,

11

i.e. � ' H⇤. A more accurate balance between acoustic and turbulent gravitational wave

production remains to be investigated, as does the possible contribution from the magnetic

field.

2.2.2 Case 2: Runaway Bubbles in a Plasma

If a model predicts a first-order PT already at the mean-field level, it is possible for the

bubble wall to accelerate without bound and hence run away [9], with vw ! c. Although

the existence of a runaway configuration does not guarantee that it will be realized [29, 30],

it is generally di�cult to prevent strong transitions from reaching the runaway regime, if it

exists.

Bubbles can run away even if expanding in a thermal plasma. In this case, the energy

density stored in the Higgs-like field profile cannot be neglected, since it is known to dominate

as ↵ ! 1 (Case 3 below). The total contribution to the GW signal can be approximated

in this case by

h2⌦GW ' h2⌦� + h2⌦sw + h2⌦turb , (22)

where we have reintroduced ⌦�, the part sourced by gradients in the scalar field. This

contribution is well-modeled by the envelope approximation (see Section 2.1.1).

The following picture emerges in this case [8]. As ↵ is increased, the wall velocity quickly

becomes relativistic. We denote by ↵1 the minimum value of ↵ such that bubbles run away

(i.e. no longer reach a terminal velocity in the plasma frame). For ↵ > ↵1, the fraction

of the total phase transition energy budget deposited into the fluid saturates. Beyond this

value, the fluid profile no longer changes with increasing ↵ and the surplus energy goes into

accelerating the bubble wall. This surplus energy is parameterized by the fraction

� ⌘ ↵� ↵1

↵
� 0 . (23)

Only the fraction ↵1/↵ of the total energy budget is then transformed into bulk motion and

thermal energy according to Eq. (20):

v ⌘ ↵1

↵
1 ,

therm ⌘ (1� 1)
↵1

↵
,

1 ⌘ ↵1

0.73 + 0.083
p
↵1 + ↵1

.

(24)
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The temperature T⇤ in this situation is given approximately by the reheat temperature

after percolation, T⇤ ⇡ Treh. So far, in most of our expressions we have assumed T⇤ ⇡ Tn ⇡
Treh, as is appropriate for transitions in a radiation-dominated epoch and without significant

reheating. However, in the vacuum case, one instead generally expects Tn ⌧ Treh ⇡ T⇤, since

Treh is governed by the vacuum energy released during the transition. The definitions of ↵ and

�/H⇤ should be adjusted accordingly. In particular, for vacuum transitions, Equations (3)

and (4) should be replaced by

�

H⇤
=

H(Tn)

H⇤
Tn

dS

dT

����
Tn

, ↵ =
⇢vac

⇢rad(Tn)
. (27)

Notice that for fast reheating one obtains H(Tn) ' H⇤ even though Tn ⌧ T⇤. This is because

energy conservation ensures that the vacuum energy that dominates H(Tn) is transformed

without loss into the radiation energy that dominates H⇤.

As Tn ! 0, ↵ ! 1 and the ↵ dependence drops out of the predicted GW signal in this

scenario (c.f. Eq. (7)). Also, in this limit, only the Higgs field contribution is significant,

from which it follows that

h2⌦GW ' h2⌦� , (28)

where h2⌦� is given in Eq. (12), and Eq. (7) with � = 1, vw = 1. There is no significant

plasma contribution in this case, by definition. Note that, if the reheating of the Standard

Model sector is slow, there will be a period of matter domination immediately following the

transition, which would change the redshift, and hence Eq. (10). We will not consider this

particular case further.

3 eLISA Sensitivity

3.1 Detection Threshold

In this analysis we consider four representative configurations for eLISA, which we name C1-

C4 and which are listed in Table 1. The corresponding eLISA sensitivity curves can be found

in Ref. [3] for the target GW source, massive black hole binaries. On the other hand, here

we are interested in a stochastic background of GWs, which is statistically homogeneous and

isotopic. The purpose of this section is to briefly explain how one can obtain sensitivity curves

which correctly represent the prospects for detecting a stochastic GW background with

eLISA for a given configuration (more details will be presented in an upcoming study [31]).

14
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How	should	we	look	for	this	signal?	

Characteris%c	frequency	set	by	H.	For	EWPT,	fpeak~	10	-3	Hz	so		
LISA	is	the	way	to	go	

EWPT	

Christopher	Moore,	Robert	Cole	and	Christopher	Berry	
hmp://rhcole.com/apps/GWplomer/	
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LISA	(Laser	Interferometer	Space	Antenna),	formerly	known	as		
eLISA	

Leading	candidate	for	the	
ESA’s	Cosmic	Vision	Program	
L3	experiment	

Proposed	launch	in	2034	

LISA	Pathfinder	launched	last	year,	demonstra%ng	feasibility	of		
LISA	technology		

hmp://lisa.jpl.nasa.gov/gallery/lisa-waves.html	
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How	well	can	LISA	observe	a	stochas%c	background	origina%ng		

from	cosmological	phase	transi%ons?	

Answer	depends	on	the	experimental	configura%on	and		

mission	%meline	

Study	commissioned	by	the	Gravita%onal	Observatory	Advisory	Team	(GOAT):	Caprini,	JK	et	al,	JCAP	1604	(2016)	no.04,	001		

Name C1 C2 C3 C4

Full name N2A5M5L6 N2A1M5L6 N2A2M5L4 N1A1M2L4

# links 6 6 4 4

Arm length [km] 5M 1M 2M 1M

Duration [years] 5 5 5 2

Noise level N2 N2 N2 N1

Table 1: Properties of the representative eLISA configurations chosen for this study. The

corresponding sensitivity curves are shown in Figure 1. More details on these configurations

and their sensitivity curves can be found in Ref. [3] and Ref. [31] respectively.

For the C1-C4 configurations, the resulting eLISA sensitivity to a stochastic GW back-

ground is shown in Figure 1. The most promising clearly appears to be C1, which corresponds

to the old LISA configuration: it has 6 links, 5 million km arm length, a duration of 5 years

and noise level corresponding to that expected to be found by the LISA pathfinder (labeled

as N2 and henceforth called “LISA pathfinder expected”). The least sensitive is C4, with

4 links, 1 million km arm length, a duration of 2 years and noise level corresponding to 10

times larger than expected (N1, also dubbed “LISA pathfinder required”). For the interme-

diate configurations, we have fixed the duration to five years and the noise level to LISA

Pathfinder expected, since these two characteristics are likely achievable. An open question,

which we would like to answer with this analysis, is whether it is more e�cient to add a

pair of laser links or to increase the arm length for the purpose of probing the occurrence

of first-order PTs in the early Universe. The outcome, as we will see, is that adding a pair

of laser links leads to a larger gain in sensitivity than increasing the arm length from 1 to 2

million km.

To assess the detectability of the GW signal, we consider the signal-to-noise ratio [32],

SNR =

s

T
Z f

max

f
min

df


h2⌦GW(f)

h2⌦Sens(f)

�2
, (29)

where h2⌦Sens(f) denotes the sensitivity of a given eLISA configuration and T is the duration

of the mission in years [31]. Whenever SNR is larger than a threshold SNRthr, the signal

h2⌦GW(f) can be detected. Quantifying SNRthr is not an easy task. We briefly describe how

this can be done here, referring the interested Reader to Ref. [31] for more details.

Applying a Bayesian method, Refs. [33, 34] found that the old LISA configuration over
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Figure 1: Sensitivity curves of the C1-C4 configurations given in Table 1 compared with a typical

GW signal. We have chosen the signal predicted in the Higgs portal scenario described in Section

4.2.2, with benchmark values T⇤ = 59.6, ↵ = 0.17, �/H⇤ = 12.54, �⇤/T⇤ = 4.07 (see Table 3).

one year can detect a white-noise stochastic background at the level of h2⌦L6
GW = 1⇥ 10�13.

This sensitivity can be achieved by exploiting the fact that, with three interferometer arms

(i.e. three pairs of laser links), it is possible to form two (virtually) noise-independent detec-

tors, in which the noise is uncorrelated whereas the GW signal is correlated. This technique

is safe and robust, although it remains to be tested with realistic noise levels. On the other

hand, this technique cannot be applied to the two-arm configurations, and the level of de-

tectable GW background is degraded. With the same Bayesian method, and assuming good

prior knowledge of the noise, Ref. [34] finds that with a four-link but otherwise LISA-like

configuration over one year one can detect a white-noise stochastic background at the level

of h2⌦L4
GW = 3.5⇥ 10�13.

For the present detection analysis, we use the above results and convert them into cor-

responding values of SNRthr. We compare the h2⌦L6
GW and h2⌦L4

GW detection levels with

the power law sensitivity curve for each six-link (respectively, four-link) configuration. The

power law sensitivity curve is a concept developed in [32] with the aim of accounting for

the improvement in the usual sensitivity curves of a GW detector that comes from the

broadband nature of a stochastic signal. The curve is given by the envelope of power laws

⌦�(f/fref)� that can be detected with SNR = 1, varying �. For each eLISA configuration,

we compute the power law sensitivity curve, and the SNR corresponding to the detection

levels h2⌦L6
GW and h2⌦L4

GW. To be conservative, for the four-link configurations we increase the

16

Preliminarily	confirmed	by	LISA	Pathfinder	
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Primary	astrophysical	foreground	expected	to	be	unresolved		

galac%c	white	dwarf	binaries	

Dis%nguish	between	primordial	and	unresolved	background		

using	spectral	differences	and	annual	modula%on	

Extra-galac%c	sources	can	also	be	isolated	
from	anisotropies	in	the	foreground	

Adams	+	Cornish,	2013	
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Prospects	for	LISA	are	model-dependent.	Strategy:	consider		

several	representa%ve	BSM	scenarios	

New	physics	can	yield	a	strong	1st	order	PT	through	several	different		

mechanisms:	

V 1�loop

e↵

= V
0

+ V T=0

1

+ V thermal

1

New	bosonic	DOFs	can	contribute	a	sizeable	thermal	cubic	term	

Loop	effects	can	reduce	the	energy	difference	between	vacua	

BSM	physics	can	give	rise	to	new	terms	in	the	scalar	poten%al	

New	physics	can	also	produce	a	first-order	PT	via	strong	dynamics		
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Representa%ve	scenarios	

	 	 	Higgs	portal:	

	 	 	NMSSM:	

	 	 	2HDM:	

	 	 	Dim-6	EFT:	

	 	 	Dilaton:	

Also	consider	strongly	coupled	dark	sectors	not	related	to	EWSB	(more	specula%ve)	

These	scenarios	also	span	the	different	possibili%es	for	bubble	expansion	(non-
runaway,	runaway	in	plasma,	runaway	in	vacuum)	

particles are assumed to transform trivially under the new Z2 symmetry. The most general

renormalizable scalar potential in this case can be written as

V (H,S) = �µ2(H†H) + �(H†H)2 +
1

2
a2(H

†H)S2 +
1

2
b2S

2 +
1

4
b4S

4 . (30)

Here, the CP-even neutral component of H is identified with the 125 GeV Standard Model–

like Higgs. The discrete symmetry ensures that S is stable. The singlet can thus contribute

to the observed dark matter relic abundance. Note that S can also be a component of a scalar

charged under other symmetries (e.g. a hidden sector gauge group). One should also bear in

mind that this model resides in a subspace of a larger model parameter space without the

Z2 symmetry. Going beyond the Z2 limit opens up additional parameter space for a strong

first-order PT.

This “Higgs portal” model can give rise to a strong electroweak PT in primarily two

ways. If the parameter b2 < 0, the singlet can be destabilized from the origin at finite

temperature (along the S direction in field space). The H†HS2 term then provides a cubic

term to the e↵ective potential, and hence can contribute to a barrier along the direction

connecting the hSi 6= 0 and electroweak vacua (in which hSi = 0). This is another example

of a two-step transition. Alternatively, if b2 > 0, the singlet will be stabilized at the origin

at all temperatures. Nevertheless, large zero-temperature loop e↵ects can lower the SM-like

Higgs quartic coupling to increase the value of �(Tn) inside the bubble. Finite-temperature

loop e↵ects can also play a role (alongside the SM gauge, Higgs, and Goldstone bosons) in

contributing to a barrier between the origin and the electroweak vacuum in this case.

To illustrate the characteristics of the electroweak PT in this scenario, we consider four

benchmark points. These points, labeled A–D, are chosen such that mS = 250 GeV, and cor-

respond to (a2, b4) = (2.8, 2.1), (2.9, 2.6), (3.0, 3.3), and (3.1, 4.0), respectively; they satisfy

all current phenomenological constraints and are particularly di�cult to test at colliders [63].

The corresponding PT parameters are displayed in Table 3; they are obtained by using the

full 1-loop finite-temperature e↵ective potential and including the resummation of daisy

diagrams. For such strong transitions, the bubble wall is expected to run away without

obstruction [30], corresponding to Case 2 of Section 2.2. The sensitivity of eLISA to these

points is shown in Figure 5, top-right panel. We find that the most sensitive eLISA con-

figuration can probe all four benchmark points, while C2 (six-links) and C3 (four-links) can

probe benchmark point D, with point C residing at the edge of the region detectable by C2).

The observational situation is therefore similar to the one discussed in Section 4.2.1.

While the benchmarks shown above feature thermal transitions (i.e. the O(3)-symmetric

29

A B C D

T⇤ [GeV] 70.6 65.2 59.6 56.4

↵ 0.09 0.12 0.17 0.20

�/H⇤ 47.35 29.96 12.54 6.42

�⇤/T⇤ 3.39 3.70 4.07 4.32

Table 3: Characteristics of the electroweak PT predicted for the Higgs portal benchmark points

discussed in Section 4.2.2.

bounce minimizes the four-dimensional Euclidean action at Tn), it should be noted that this

model can allow for a metastable electroweak-symmetric phase to persist to zero temperature.

This suggests that very strongly supercooled transitions occurring in vacuum (Case 3) may

be possible. The resulting GW signals in this case have not been previously analyzed, but

would be worthwhile to consider in future work.

New scalars charged under the SM gauge group are also phenomenologically and theoret-

ically well-motivated. When transforming nontrivially under the electroweak gauge group,

such scalars can participate in electroweak symmetry breaking, with a potentially significant

impact on the electroweak PT. The simplest realization of this scenario is that of a two-

Higgs-doublet-model (2HDM), in which the SM Higgs sector is enlarged by a second scalar

doublet. These scenarios can accommodate electroweak baryogenesis [64] and can result in

the generation of GWs at the electroweak PT (with preliminary studies having been carried

out in [65]). The scalar potential is 12

V (H1, H2) = µ2
1 |H1|2 + µ2

2 |H2|2 � µ2
h
H†

1H2 + h.c.
i
+

�1

2
|H1|4 + �2

2
|H2|4

+ �3 |H1|2 |H2|2 + �4

���H†
1H2

���
2

+
�5

2

⇣
H†

1H2

⌘2

+ h.c.

�
. (31)

After electroweak symmetry breaking, the presence of the two doublets H1, H2 yields three

new physical states in addition to the 125 GeV Higgs h: a charged scalar H± and two neutral

states H0, A0.

In this class of scenarios, a strong electroweak PT is driven by a decrease in the free-energy

di↵erence between the electroweak-symmetric local maximum and electroweak-broken phase

at T = 0, w.r.t. the SM prediction. The e↵ect of this decrease on the strength of PT is

12We assume for simplicity CP conservation, as well as a Z2 symmetry (softly broken by µ2 in Eq. (31))

for phenomenological reasons, namely the absence of flavour-changing neutral currents in the Higgs sector.
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A B

T⇤ [GeV] 63 26

↵ 0.13 2.3

�/H⇤ 160 5

�⇤/T⇤ 4 9.5

Table 5: Characteristics of the electroweak PT in the SM plus a dimension-6 e↵ective operator for

two benchmark points taken from Ref. [36]: ⇤ ⇠ 600GeV (A) and ⇤ ⇠ 576GeV (B), see Section

4.2.3.

approach, for instance by adding dimension-6 operators in the Higgs potential allowing for

a negative quartic coupling [35,70]:

V (�) = µ2|�|2 � �|�|4 + |�|6
⇤2

. (32)

This model illustrates the typical correlations expected between small values of �/H⇤ and

large ↵ mentioned earlier. Contours of ↵ and �/H⇤ were computed in the (mh,⇤)–plane

for the complete one-loop finite temperature e↵ective potential associated with Eq. (32) in

Ref. [35]. The region corresponding to a sizable GW signal from the electroweak PT is

confined to values of ⇤ below 1 TeV. The tension between such a low cuto↵ and the LHC

bounds remains to be investigated. Nevertheless, focusing on the GW signal, we consider

two benchmark points where ⇤ is around 600GeV [36], both in the relativistic, non-runaway

case and in the runaway with finite ↵ case (the predicted wall velocity remains to be studied

in such non-renormalizable models, although runaways seem likely, given the tree-level origin

of the barrier between vacua). The resulting features of the electroweak PT are quoted in

Table 5. We find that for most benchmark points the GW signal can be detected by all eLISA

configurations except C4. However, only C1 can detect all benchmark points.

4.3 Strong Phase Transitions Beyond the Electroweak Scale

As we have seen, observable GWs may have been produced at the electroweak scale in various

scenarios beyond the Standard Model. However, there are other scenarios for new physics

that may have given rise to a strong first-order cosmological PT in the early Universe. We

discuss two such examples here.
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4.3.1 Dilaton-like Potentials and Naturally Supercooled Transitions

Models with a spontaneously broken (approximate) conformal symmetry feature a pseudo-

Nambu-Goldstone boson associated with the broken symmetry; this field is known as the

dilaton. The scalar potential V�(�) of the dilaton field, �, can be parametrized by a scale

invariant function modulated by weakly scale-dependent function:

V�(�) = �4 ⇥ P (�✏) where |✏| ⌧ 1 (33)

A particularly interesting and well-motivated class of scenarios arises when the quadratic

term for the Higgs field � is controlled by the VEV of the dilaton �:

V (�,�) = V�(�) +
�

4
(�2 � ⇠ �2)2 (34)

where ⇠ is a constant. In particular, this potential is precisely that of the 5D Randall-

Sundrum models [73], which provide an elegant solution to the hierarchy problem of the

SM.

Assuming the Higgs is localized on the IR brane at a distance y = r from the UV brane

(localized at y = 0), the 4D e↵ective action for the Higgs is

L4 = e�2k⇡r⌘µ⌫DµH̃D⌫H̃ � e�4k⇡r�(|H̃|2 � v2P )
2 = ⌘µ⌫DµHD⌫H � �

✓
|H|2 � v2P

k2
�2

◆2

(35)

where vP ⇠ ⇤UV ⇠ mP l ⇠ k, H is the canonically normalized field H = e�k⇡rH̃ and the

radion field is

� ⌘ ke�k⇡r. (36)

We also define the scale

⇤IR ⌘ h�i (37)

which is generated once the radion is stabilized and is exponentially warped down from the

Planck scale due to the Anti de Sitter (AdS) geometry. We also have ⇠ = v2/⇤2
IR. For

the 5D AdS metric, the e↵ective 4D potential for the radion was shown to be dilaton-like

(Eq. 33), independently of the inter-brane distance stabilization mechanism [74–76]. We

therefore recover the scalar potential Eq. (34) for the coupled radion-Higgs system. Solving

the weak/Planck scale hierarchy leads to ⇤IR ⇠ O(TeV).

The cosmological implications of the potential V�(�) in Eq. (34) were considered in

Refs. [71,72]. A very strong first-order PT typically occurs for this type of potential. In the

first investigation of the associated PT, it was argued that the transition to the minimum
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be determined by the tadepole conditions. Alternatively 'i can be reconstructed by the �i:
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In this way we find that two sets of rephasing invariants should be equivalent. One can use

either to calculate the electroweak baryogenesis and/or EDMs.

IV. INTERACTIONS

We start with the superpotential in Eq. (1). The so called F-terms of the Higgs potential

are derived from the super potential in the following way:

VF =
X

i

�

�

�

�

�W

��i

�

�

�

�

2

= |�HT
u "Hd + S2 + 2�S + ↵|2 + |�S|2(H†

uHu +H†
dHd) (13)

The D-terms are the same as MSSM

VD =
1

2

X

i,j

g2a(�
†
iT

a�i)(�
†
jT

a�j) =
1

2
g22|H†

uHd|2 +
1

8
(g21 + g22)(H

†
uHu �H†

dHd)
2 . (14)

The soft-breaking terms corresponding to the super potential is

Vsoft = m2
Hu

H†
uHu +m2

Hd
H†

dHd +m2
SS

†S

+

⇢

(�A�S + b0)H
T
u "Hd +

1

3
AS

3 +m2
7S

2 +m3
9S + h.c.

�

. (15)

Then we can get the scalar Higgs potential of the most general NMSSM:

V = VF + VD + Vsoft

= |�HT
u "Hd + S2 + 2�S + ↵|2 + |�S|2(H†

uHu +H†
dHd)

+
1

2
g22|H†

uHd|2 +
1

8
(g21 + g22)(H

†
uHu �H†

dHd)
2

+ m2
Hu

H†
uHu +m2

Hd
H†

dHd +m2
SS

†S

+

⇢

(�A�S + b0)H
T
u "Hd +

1

3
AS

3 +m2
7S

2 +m3
9S + h.c.

�

(16)
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Results	(Case	1:	Non-Runaway	Bubbles)	
Representa%ve	models:	2HDM,	NMSSM,	Dark	Sector	(?),	Dim-6	EFT		

Figure 4: Projected eLISA sensitivity to Case 1: non-runaway relativistic bubble walls. Results

are displayed for four values of T⇤ (indicated) and the four eLISA configurations described in Table

1. The detectable region is shaded. Also shown are benchmarks from various specific models,

discussed in Section 4. All other parameters are as described in the text. Note that the values of

T⇤ chosen correspond only approximately to the precise values for the benchmark points. The GW

signal is given primarily by the contribution of sound waves (turbulence is negligible for the chosen

value of ✏).

22

Primary	source:		
sound	waves	
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Results	(Case	2:	Runaway	Bubbles	in	Plasma)	
Representa%ve	models:	Higgs	Portal,	NMSSM,	Dark	Sector	(?),	Dim-6	EFT		

Figure 5: Projected eLISA sensitivity to Case 2: runaway bubble walls with finite ↵. Results are

displayed for four values of T⇤ and ↵1 (indicated) and the four eLISA configurations described in

Table 1. The detectable region is shaded. Also shown are benchmarks from various specific models,

discussed in Section 4. All other parameters are as described in the text. Note that the values of

T⇤ and ↵1 chosen correspond only approximately to the precise values for the benchmark points

(as described in the text). The GW signal is given primarily by the contribution of the scalar field

and of the sound waves.

23

Primary	source:		
sound	waves	+	
scalar	field	
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Results	(Case	3:	Runaway	Bubbles	in	Vacuum)	
Representa%ve	models:	Dilaton,	Dark	Sector	(?)	

Figure 6: Projected eLISA sensitivity to Case 3: runaway bubble walls in vacuum. The re-

gion detectable by each configuration (c.f. Table 1) is shaded. Also pictured are the predictions

corresponding to the benchmark points discussed in Section 4 that fall under Case 3.

3.4 Summary of Model-Independent Projections

The model-independent analysis of this section shows that the six-link configurations provide

the most coverage to first-order cosmological phase transitions. The configuration with four

links and 2 million km arm length is, however, not much worse than that with six links and

1 million km arm length. Note that much better knowledge of the instrumental noise and

astrophysical backgrounds would be needed to use the four-link configurations, since one

cannot cross-correlate the signal of the two e↵ective, coincident detectors that the six-link

configurations provide. This is accounted for in the above analysis through the technique

explained in Section 3.1, and in particular through the increase of SNRthr. We stress that

our comparison between the four- and six-link configurations would change substantially if

the analysis of Ref. [34] were found to be unfeasible in practice, and/or the assumed prior

knowledge of the noise were unachievable.

We now move on to consider how specific models map on to the model-independent

parameter space we have been discussing so far.
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Conclusions	of	our	study:	
links [31]), we conclude that:

• For typical electroweak phase transitions, in which all relevant dimensionful parameters

are near the electroweak scale, the configuration C1 is definitively better than the

others, while the configuration C4 is decisively unsatisfactory. The performances of the

configurations C2 and C3 are similar, but C2 has the ability to test a larger fraction of

the considered benchmark points.

• For phase transitions not strictly related to electroweak symmetry breaking, e.g. in-

volving a dark sector or a dilaton, the predicted characteristics of the phase transitions

exhibit more variation. Larger GW signals are allowed than in the electroweak case. For

certain scenarios, the resulting GW spectrum can be probed by all considered eLISA

designs. The C1 configuration, however, has the potential to test a much wider region

of the parameter space in such models than do C2–C4.

It is worth reiterating that our results for the four-link configurations depend strongly on

the assumed prior knowledge of the noise level, as well as the feasibility of the data analysis

technique proposed in [34].

Finally, we emphasize that our results can be straightforwardly extended beyond the

specific models considered in Section 4. To do so, one should identify the main features of the

bubble wall dynamics from the general considerations of Section 2.2 and e.g. Refs. [8,9,29,30],

and compute the predicted values for the parameters ↵, �/H⇤, T⇤ and ↵1, as defined in

Sections 1.1 and 2 (in some cases only a subset of these quantities will be relevant for the

predicted GW signal). The results of this procedure can then be compared directly with

the appropriate eLISA sensitivity curves provided in Figs. 4–7. In this way, we hope this

study to serve as a useful tool (and motivation) for future investigations of eLISA’s potential

to probe new physics scenarios predicting strong first-order phase transitions in the early

Universe.
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“C1	configura'on”	is	similar	to	the	original	LISA	design.		
Feasible	if	NASA	decides	to	par%cipate	

The	takeaway:	

LISA	will	likely	have	a	real	chance	at	detec%ng	gravita%onal	
waves	from	a	strong	first-order	phase	transi%on,	providing	

valuable	informa%on	about	our	cosmic	history.	In	some	cases	
(e.g.	for	highly	decoupled	new	physics),	LISA	is	likely	the	only	

op%on.	
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Only	very	strong	phase	transi%ons	yield	observable		
gravita%onal	radia%on.		

What	would	a	signal	imply	for	models	electroweak	
baryogenesis?	

	Can	electroweak	baryogenesis	source	both	detectable	
gravita'onal	waves	and	the	observed	baryon	asymmetry?	

Depends	on	the	scenario…	
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Usual	charge	transport	mechanism	could	produce	both,		

provided	significant	plasma	velocity	in	front	of	the	bubble	

J.M.	No,	2011	

vw-v+	relevant	for	EWB		

vw	relevant	for	gravita%onal	waves		

Not	very	generic,	
but	possible	
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Other	possibili'es:	

Bubbles	inside	bubbles	(Caprini	+	No,	2011)	

Baryogenesis	from	bubble	collisions	
	 	 		
	 	 	-Natural	Cold	EWB	(Konstandin	+	Servant,	2011)	

	 	 	-Par%cle	produc%on	from	elas%c	collisions	(Katz	+	Riomo,	2016)	
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GW	interferometers	will	complement	collider	searches	in		

probing	a	strong	first-order	EWPT	

Huang	et	al,	2016	
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Other	cosmological	PT	scenarios	might	also	predict	a	signal	at		

LISA	and	other	GW	experiments	

E.g.	Monodromy	infla'on	

Hebeker	et	al,	2016	

If	more	than	one	vacuum	is	populated	in	a	Hubble	patch,	can	give	
rise	to	a	strong	first	order	cosmological	PT	

For	other	infla%onary	signals	expected	at	LISA,	see	Garcia-Bellido	et	al,	2016	and	Marco’s	slides	
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Other	GW	experiments	can	probe	PTs	at	different	scales	

Dev	et	al,	2016	

Higher	temperature	phase	transi%ons	can	predict	signal	at	aLIGO.	
Lower	temperature	phase	transi%ons	can	predict	signal	at	pulsar	
%ming	arrays	

Schwaller,	2015	
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LISA	can	probe	cosmological	phase	transi%ons	in	many	BSM		

scenarios.	The	closer	to	the	original	LISA	design	the	bemer.	

A	signal	in	LISA	can	be	compa%ble	with	viable	electroweak		

baryogenesis	

PTs	at	other	scales	may	yield	a	signal	in	advanced	LIGO	or		

pulsar	%ming	arrays	


