Exploring the low mass frontier in dark matter direct detection

Tongyan Lin UC Berkeley / LBNL

KICP Particle Cosmo Workshop October 13, 2016

Outline

- 1. Why light dark matter?
- 2. Direct detection of light dark matter
- 3. Low-threshold targets for M=meV-MeV

a. absorption in semi/super-conductorsb. scattering in liquid helium

Dark matter puzzles

Directions

 Standard Model has other unresolved questions use as a guide for dark matter.

 Look more broadly for a dark sector. Generically, this would be as rich as the Standard Model.

WIMP dark matter

WIMP (Weakly Interacting Massive Particle)

Fig. 5.1: The freeze out of a massive particle species. The dashed line is the actual abundance, and the solid line is the equilibrium abundance. $||_0||_0 \otimes \text{Turner}$

Relic abundance of dark matter today set by weak-scale interactions in the early universe

M = 10 GeV - 10 TeV?

Mass scale of dark matter?

sub-GeV dark matter

light mediators

e.g. Fayet, Pospelov et al. 2007

asymmetric

e.g. Nussinov, Barr, Kaplan et al. **7**

3 to 2 annihilation, SIMPs

Hochberg et al. 2014, 2015

sub-keV non-thermal

e.g. Pospelov et al. 2008, Arias et al. 2012

Mass scale of dark matter?

2. Direct detection of light dark matter

Direct detection of WIMPs

Energy deposited from WIMP in nuclear recoil:

$$E_R \sim \frac{\mu_{\chi N}^2 v^2}{m_N} \sim 1 - 100 \,\mathrm{keV}$$

Typical dark matter velocity $v \sim 10^{-3}$

Direct detection of WIMPs

Typical threshold in experiment: > 1 keV recoil energy

Detecting light dark matter

Look for electron recoils

- Below ~ 1 GeV, inefficient energy transfer to nuclei.
- Idea applied in: Xenon, semiconductors...

Essig, Mardon, Volansky 2011 Essig et al. 2012, Graham et al. 2012

Electron recoils

 Electron interactions already constrained with Xenon10 low-threshold analysis, search for DM ionization signal

 $E_{th} \sim 12 \text{ eV}$

Electron recoils

Gapless excitations

Long wavelength acoustic phonons have linear dispersion:

$$\Omega = c_s |\vec{Q}|$$

Lattice vibrations in a solid

 $c_s \sim 10^{-5}$ in aluminum

• Density perturbations in a liquid

$$c_s \sim 10^{-6}$$
 in helium

Low-threshold targets

Semiconductors

- Reach MeV DM (scattering)
 Reach keV DM (scattering)
- Used in DAMIC, SuperCDMS, ...

Superconductors

Helium

- $E_{th} \sim eV$, electron+phonon $E_{th} \sim meV$, electron+phonon
- E_{th} ~ meV, phonons
- Reach keV DM (scattering)

3a. Absorption of light bosonic dark matter

with: Yonit Hochberg Kathryn Zurek 1604.06800, 1608.01994

sub-keV bosonic dark matter

- Candidates:
- Hidden photon
 - Pseudoscalar (axion)
 Scalar
- Coherent field below *m* ~ eV

Local DM density: 0.4 GeV/cm3 $\lambda_{dB} \sim \frac{2\pi}{m_{DM}v}$ $v \sim 10^{-3}$ Occupation number is high: $\frac{\rho_{DM}}{m_{DM}} \gg \lambda_{dB}^{-3}$

Non-thermal relic abundance, e.g. ``misalignment"

$$ho_{
m DM} = rac{1}{2} m_{
m DM}^2 \phi_0^2 \qquad \phi_0 \, - {
m field} \; {
m amplitude today}$$

 $V(\phi)$

Photoelectric effect:

absorb all of the energy of incoming dark matter

Absorption from halo

- mono-energetic
- doesn't require coherent field

Solar emission

- ~keV energies
- ``axio-electric" effect

DM absorption in materials

Typical electron in material has $k \sim keV$. Need momentum transfer q ~ 100 m_x in absorption.

- Atomic ionization
 - Ex: Xenon, ionization energy = 12 eV
- Absorption on a crystal/solid
 - Rely on band structure
 - Phonon emission

Relate the DM absorption rate to **photon** absorption rate:

Conductivity

• Polarization tensor in medium:

- $\Pi^{\mu\nu} = e^2 \langle J_{\rm EM}^{\mu\dagger}, J_{\rm EM}^{\nu} \rangle \qquad \Pi^{\mu\nu}(\vec{q}, \omega) = \Pi(\omega) \sum_{i=1,2} \epsilon_i^{T\mu} \epsilon_i^{T*\nu} + \Pi(\omega) \epsilon^{L\mu} \epsilon^{L\nu}$
- Related to optical conductivity

$$\vec{J} = \hat{\sigma} \vec{E}$$
 $\Pi(\omega) \approx -i \hat{\sigma} \omega$
 \uparrow
Conductivity

Real part gives effective mass , imaginary part gives absorption:

Re
$$\Pi(\omega) \approx \omega_p^2 = \sigma_2 \omega$$
 $-\frac{\operatorname{Im} \Pi(\omega)}{\omega} = \sigma_1 = \langle n_e \sigma_{abs} v \rangle_{\gamma}$

Hidden photon dark matter

Kinetic mixing in vacuum:

$$\mathcal{L} \supset -\frac{\kappa}{2} F_{\mu\nu} V^{\mu\nu}$$

Matter coupling:

$$A_{\mu} \to A_{\mu} - \kappa V_{\mu} \longrightarrow \kappa e V_{\mu} J^{\mu}_{\rm EM}$$

Absorption rate of halo DM

Semiconductor targets

Figure 1. Cross-sectional diagram of the CCD described in this work.

(b) WIMP detection in a CCD

2. FULLY-DEPLETED CCD PHYSICS AND OPERATION Figur Existing-sexperiments, already-iuse Germanium, Silicon targets.

three-phase CCD is fabricated on a high-resistivity, n-type silicon substrate. We have fabricated CCD's on both 100 mm and 150 mm diameter high-resistivity silicon substrates. The resistivity of 100 mm wafers is as high as $10,000-12,000 \ \Omega$ -cm, while the initial work on 150 mm wafers has been on $4,000-8,000 \ \Omega$ -cm silicon.

• The thickness of the CCD rest Singhologie extracted sensitivity when compared to conventional thinned CCD's.¹ This is due to the strong dependence of absorption length on wavelength at photon energies approaching the silicon bandgap.⁴ Figure 2 shows measured quarter (OE) and the strong dependence of a conventional thinned to conventional the conventional thinned to conventional thinned to conventional thinned to conventional thinned to conventional the conventional thinned to conventional thinned to conventional the conve

back-illuminated CCD operated at -130°C. The QE shown in Figure 2 has a two-layer anti-reflection (AR of indum time (CO) and 000 eof concerns and 000 eof co

Thick, fully-depleted CCD's also greatly reduce Fringing occurs when the absorption depth of the result in fringing patterns that are especially a period

A unique feature of the CCD shown in Figure 1 For a thick CCD fabricated on high-resistivity since

Electron excitations

Optical absorption dominated by direct transitions Band gap: 0.7 eV (germanium), 1.1 eV (silicon)

Multi-phonon excitation

Optical absorption below the band gap is allowed if (multiple) phonons are excited instead!

Hidden photon DM

Hidden photon DM

Hidden photon DM

See also: I. Bloch, Tien-Tien Yu, etc 2016 for similar study

Superconductor target **Measurement** by sensitive $T = 10 \,\mathrm{mK}$ bolometer (TES) Superconducting Substrate (AI) Insulating layer $E_{th} \sim meV goal$ TES and QP collection antennas (W) SuperConducting Bias Rails (Al) Must improve substantially on current energy resolution Aluminum ~50-100 meV (Type I superconductor) $T_c = 1.2 \ K$ Noise is going to be an issue, backgrounds at

5 mm

29

low energies unknown.

Hochberg, Zhao, and Zurek 2015 Hochberg, Pyle, Zhao, and Zurek 2015

Why superconductors?

- Small band gap (< meV)
- Long-lived quasiparticle (electron) excitations
- Cooper pairs decoupled from thermal noise

Superconductors

pairs) take a long time to recombine!

Absorption via phonon emission

The phonon can carry large momentum, with small energy.

Theory uncertainties:

phonon dispersion, coupling

 10^{1}

• impurities

Suppression in absorption rate, reduced effective kinetic mixing

Hidden photon DM

Pseudoscalar DM

3b. DM scattering in superfluid He

in progress, with: Simon Knapen Eckhard Krotscheck Kathryn Zurek

Why superfluid Helium?

- Long-lived quasiparticle excitations
- Potential detection of meV energy depositions

Detector concept

- Operation at 10-100 mK
- Evaporation and amplification x10-40 down to 0.6 meV!
- Measure scintillation at energies ≈ 100 eV
- Superfluid helium used for ultracold neutrons, etc.
- Easy to obtain and purify

Scattering in Helium

• Neutron scattering:

 $\frac{d^2\sigma}{d\omega d\Omega} \equiv \frac{\sigma^n}{4\pi} \frac{k_f}{k_i} S(Q,\omega)$

Dynamic structure factor: $S(\mathbf{Q}, \omega) = \frac{1}{n_0} \sum_F |\langle F | n_{\mathbf{Q}} | I \rangle|^2 \delta(E_F - E_I - \omega)$ response of the fluid to a **density** perturbation with momentum transfer Q, energy ω

Density operator:

$$\hat{n}_{\mathbf{k}} = \frac{1}{\sqrt{N}} \sum_{i} e^{i\mathbf{k} \cdot \mathbf{r_i}}$$

• Apply directly to dark matter scattering $\frac{d^2\sigma}{d\omega d\Omega} \equiv \underbrace{\sigma^n}_{4\pi} \frac{k_f}{k_i} S(Q, \omega)$

Multiphonon excitations

2-phonon excitation

Kinematics allows larger energy ω deposited, even for small Q

Fig. 1.6. The broad high-energy ________r_ticle (or multiphonon) structure in $S(\mathbf{Q}, \omega)$ at intermediate Q at 1.1 K and SVP. The "peak" position and its width are indicated [Source: Cowley and Woods, 1971].

Schutz and Zurek 2016

Theory vs. experiment

Dynamic structure factor S(Q,ω)

Sensitivity to light DM

Two-phonon scattering rate

Dominant scattering into two rotons

Extends reach to lower mass DM! (~10 meV resolution)

Conclusions

- Current direct detection experiments focus on WIMP dark matter at or above 1 GeV
- New ideas (for models and detection) explore many orders of magnitude in mass!

Absorption of bosonic DM down to meV

Scattering of < MeV DM