Alberto Nicolis

Columbia University

On tensor modes in solid inflation

w/ Jonghee Kang

(w/ Solomon Endlich and Junpu Wang, 2012)

Inflation: usual story

- The early universe: homogeneous and isotropic
- Usually modeled via $\varphi_{a}=\varphi_{a}(t)$
- Time-translations spontaneously broken

Goldstone excitation = adiabatic perturbations

- Systematic effective field theory
(Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)

Solid inflation

- t-independent, x-dependent fields: $\varphi_{a}=\varphi_{a}(\vec{x})$
- time-translations unbroken
- spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy $\longrightarrow \begin{gathered}\text { internal } \\ \text { symmetries }\end{gathered}$
2. the need for a physical "clock" \longrightarrow gravity

Homogeneity and isotropy

- Ex: one scalar $w / \operatorname{vev}\langle\varphi\rangle=x$
- If it has a shift symmetry $\varphi \rightarrow \varphi+a$
- unbroken diagonal translation

$$
\left\{\begin{array}{l}
x \rightarrow x-a \\
\varphi \rightarrow \varphi+a
\end{array}\right.
$$

Rotations still broken

3 scalars:

$$
\phi^{I}(\vec{x}, t) \quad I=1,2,3
$$

vevs:

$$
\left\langle\phi^{I}\right\rangle=x^{I}
$$

If internal symmetries:

$$
\begin{aligned}
& \phi^{I} \rightarrow \phi^{I}+a^{I} \\
& \phi^{I} \rightarrow S O(3) \phi^{I}
\end{aligned}
$$

then unbroken diagonal subgroups

This is a solid

EFT for solids

Dof: volume elements' positions

$$
\phi^{I}(\vec{x}, t) \quad I=1,2,3
$$

Action

$$
B^{I J} \equiv \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}
$$

$$
\mathcal{L}=F\left([B], \frac{\left[B^{2}\right]}{[B]^{2}}, \frac{\left[B^{3}\right]}{[B]^{3}}\right)+\ldots
$$

$$
[\ldots]=\operatorname{Tr}(\ldots)
$$

(Dubovsky, Gregoire, Nicolis, Rattazzi 2006)

Problem

The universe is expanding. Tour closet is not.

Stress-energy tensor

$$
T_{\mu \nu} \sim\left(F, F^{\prime}\right) \times\left(g_{\mu \nu}, \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}\right) \times\left(\delta^{I J}, B^{I J}, B^{I K} B^{K J}\right)
$$

On the background $\quad B^{I J}=\delta^{I J}$

$$
T_{\mu \nu} \rightarrow\left\{\begin{array}{l}
\rho=-F \\
\rho+p=-2 X F_{X}
\end{array}\right.
$$

inflation ("slow roll") \longrightarrow small $F_{X}=\mathcal{O}(\epsilon)$
Approximate internal scale invariance

$$
\phi^{I} \rightarrow \lambda \phi^{I}
$$

Cosmological perturbations

$$
\begin{array}{lr}
\phi^{I}=x^{I}+\pi^{I} & \mathrm{U} . \mathrm{G.:} \\
g_{\mu \nu}=g_{\mu \nu}^{\mathrm{FRW}}+\delta g_{\mu \nu} & \text { Lorentz violating } \\
\text { massive gravity }
\end{array}
$$

Very roughly:

$$
\begin{aligned}
& \mathcal{L}_{2} \sim F_{X} \cdot(\partial \pi)^{2} \\
& \mathcal{L}_{3} \sim F \cdot(\partial \pi)^{3} \\
& \zeta \sim \vec{\nabla} \cdot \vec{\pi}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\langle\zeta \zeta\rangle \sim \frac{1}{\epsilon} \frac{1}{c_{L}^{5}} \frac{H^{2}}{M_{\mathrm{Pl}}^{2}} \\
\frac{\mathcal{L}_{3}}{\mathcal{L}_{2}} \sim \frac{1}{\epsilon} \frac{1}{c_{L}^{2}} \zeta
\end{array}\right.
$$

(cf. $\frac{1}{\epsilon} \frac{1}{c_{L}} \frac{H^{2}}{M_{\mathrm{Pl}}^{2}}$)
(cf. $\frac{1}{c_{L}^{2}} \zeta$)

$$
\begin{aligned}
& S^{(2)}=S_{\gamma}^{(2)}+S_{T}^{(2)}+S_{L}^{(2)} \\
& S_{\gamma}^{(2)}=\frac{1}{4} M_{\mathrm{Pl}}^{2} \int d t d^{3} x a^{3}\left[\frac{1}{2} \dot{\gamma}_{i j}^{2}-\frac{1}{2 a^{2}}\left(\partial_{m} \gamma_{i j}\right)^{2}+2 \dot{H} c_{T}^{2} \gamma_{i j}^{2}\right] \\
& S_{T}^{(2)}=M_{\mathrm{Pl}}^{2} \int d t \int_{\vec{k}} a^{3}\left[\frac{k^{2} / 4}{1-k^{2} / 4 a^{2} \dot{H}}\left|\dot{\pi}_{T}^{i}\right|^{2}+\dot{H} c_{T}^{2} k^{2}\left|\pi_{T}^{i}\right|^{2}\right] \\
& S_{L}^{(2)}=M_{\mathrm{Pl}}^{2} \int d t \int_{\vec{k}} a^{3}\left[\frac{k^{2} / 3}{1-k^{2} / 3 a^{2} \dot{H}}\left|\pi_{L}-(\dot{H} / H) \pi_{L}\right|^{2}+\dot{H} c_{L}^{2} k^{2}\left|\pi_{L}\right|^{2}\right] \\
& \begin{aligned}
& S_{3} \simeq \int d^{4} x\left(-\frac{1}{243} F_{Y}\right) \cdot\left\{16[\partial \pi]^{3}-36[\partial \pi]^{2}\left(\left[\partial \pi \cdot \partial \pi^{T}\right]+\left[(\partial \pi)^{2}\right]\right)\right. \\
&\left.+18\left[(\partial \pi)^{3}\right]+18\left[(\partial \pi)^{2} \cdot \partial \pi^{T}\right]\right\}
\end{aligned}
\end{aligned}
$$

Observables

$$
\begin{aligned}
& n_{S}-1=2 \epsilon c_{L}^{2}-\eta-5 s \\
& n_{T}-1=2 \epsilon c_{L}^{2} \quad\left(\text { mass term } \sim c_{T}^{2}\right) \\
& r=16 \epsilon c_{L}^{5}
\end{aligned}
$$

Quadrupolar "squeezed limit"

$$
\langle\zeta \zeta \zeta\rangle \rightarrow f_{N L} \times\langle\zeta \zeta\rangle\langle\zeta \zeta\rangle \times\left(1-3 \cos ^{2} \theta\right)
$$

$f_{N L} \sim \frac{1}{\epsilon} \frac{1}{c_{L}^{2}}$
2\% overlap w/ "local" shape
39% w/ "equilateral"
32% w/ "orthogonal"
(see also Shiraishi et al. 2012, Barnaby et al. 2012, Bartolo et al. 2013)

Anisotropic generalizations

$$
\begin{aligned}
& \phi^{I} \rightarrow \phi^{I}+a^{I} \\
& \phi^{I} \rightarrow \underset{\text { discrete rotations }}{S O(O)} \phi^{I}
\end{aligned}
$$

Yet, we want:

- isotropic background
- isotropic scalar spectrum

Background

$$
\begin{aligned}
& T_{00} \\
& T_{i j} \propto \delta_{i j}
\end{aligned}
$$

Discrete subgroup of SO(3) with isotropic 2-index tensors?
Ex: cubic group

$$
O_{i j}^{(2)}=\hat{x}_{i} \hat{x}_{j}+\hat{y}_{i} \hat{y}_{j}+\hat{z}_{i} \hat{z}_{j}=\delta_{i j}
$$

accidentally isotropic!

Scalar spectrum

$$
\begin{aligned}
& \phi^{I}=x^{I}+\pi^{I} \\
& \quad \mathcal{L}_{2}=O_{i j}^{(2)} \cdot \dot{\pi}_{i} \dot{\pi}_{j}+O_{i j k l}^{(4)} \cdot \partial_{i} \pi_{j} \partial_{k} \pi_{l}
\end{aligned}
$$

Discrete subgroup of $\mathrm{SO}(3)$ with isotropic 4 -index tensors? Ex: cubic group

$$
\begin{aligned}
O_{i j k l}^{(4)}= & \delta_{i j} \delta_{k l} \\
& \delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k} \\
& \hat{x}_{i} \hat{x}_{j} \hat{x}_{k} \hat{x}_{l}+(\hat{x} \rightarrow \hat{y}, \hat{z})
\end{aligned}
$$

not isotropic!

Scalar 3-pt function:

$$
\mathcal{L}_{3} \supset O_{i j k l m n}^{(6)} \cdot \partial_{i} \pi_{j} \partial_{k} \pi_{l} \partial_{m} \pi_{n}
$$

Tensor spectrum:

$$
\mathcal{L}_{2}=O_{i j k l}^{(4)} \cdot \dot{\gamma}_{i j} \dot{\gamma}_{k l}+O_{i j k l m n}^{(6)} \cdot \partial_{i} \gamma_{j k} \partial_{l} \gamma_{m n}
$$

Looking for a discrete subgroup of SO(3) w/

- Isotropic $O^{(2)}$
- Isotropic $O^{(4)}$
- Anisotropic $O^{(6)}$

Only one possibility: icosahedral group

$$
\begin{aligned}
& O_{i j}^{(2)}=\delta_{i j} \\
& O_{i j k l}^{(4)}=\begin{array}{l}
\delta_{i j} \delta_{k l} \\
\\
\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}
\end{array}
\end{aligned}
$$

$O_{i j k l m n}^{(6)}=2(\gamma+2) \delta_{i j k l m n}$

$$
+(\gamma+1)\left(\delta_{i j k l} \delta_{m n} \delta_{m, i+1}+\ldots\right)
$$

$$
+\left(\delta_{i j k l} \delta_{m n} \delta_{m, i-1}+\ldots\right)
$$

$$
\gamma=(1+\sqrt{5}) / 2
$$

Scalar 3-pt function

Messy expression - depends on vectors k2, k3
Two independent parameters α, β
Anisotropies $\propto(\beta-9 / 2)$

Overlap with standard shapes

$$
\bar{f}_{\mathrm{NL}}\left(\theta_{2}\right)=-\frac{\alpha}{\epsilon c_{L}^{2}}\left[\frac{19415}{378}(\beta-8)+\frac{104135}{6048}(2 \beta-9) P_{6}\left(\cos \theta_{2}\right)\right]
$$

Tensor spectrum

No anisotropy to lowest-order in derivatives:

$$
\begin{aligned}
F\left(B^{I J}\right)=F\left(g^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}\right) & \nrightarrow \partial \gamma \partial \gamma \\
& \rightarrow O_{i j k l}^{(4)} \cdot \gamma_{i j} \gamma_{k l}
\end{aligned}
$$

Needs higher-derivative couplings - e.g.:

$$
\begin{aligned}
& \mathcal{L} \supset \frac{1}{M^{2}}\left(R^{\mu \nu \rho \sigma} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J} \partial_{\rho} \phi^{K} \partial_{\sigma} \phi^{L}\right)^{3} \cdot T_{\text {aniso }} \\
& R_{\mu \nu \rho \sigma} \sim H^{2}+H \partial \gamma+\partial \gamma \partial \gamma+\partial \partial \gamma \\
& \Longrightarrow \delta c_{\gamma}^{2}=\frac{H^{4}}{M^{2} M_{\mathrm{Pl}}^{2}}
\end{aligned}
$$

However:

$$
R_{\mu \nu \rho \sigma} \sim H^{2}+H \partial \gamma+\partial \gamma \partial \gamma+\partial \partial \gamma
$$

\Longrightarrow ghosts at $E_{*} \sim H / \delta c_{\gamma}$ effect is perturbative: $\quad \delta c_{\gamma} \ll 1$

Same conclusion for other higher derivative operators E.g.

$$
\begin{gathered}
\nabla \nabla \phi \ldots \nabla \nabla \phi \cdot T_{\text {aniso }} \\
\nabla \nabla \phi=(H+\underline{\partial \gamma)}(1+\partial \pi)+\underline{\partial \partial \pi}
\end{gathered}
$$

Regardless of where it comes from:

$$
\mathcal{L}_{\gamma} \propto \dot{\gamma}_{i j}^{2}-\left(\partial_{k} \gamma_{i j}\right)^{2}-\delta c_{\gamma}^{2} T_{\text {aniso }}^{i j k l m n} \partial_{i} \gamma_{j k} \partial_{l} \gamma_{m n}
$$

spectra:

$$
\begin{aligned}
& \left\langle\gamma_{+} \gamma_{+}\right\rangle=\left\langle\gamma_{-} \gamma_{-}\right\rangle \\
& \left\langle\gamma_{+} \gamma_{-}\right\rangle \neq 0
\end{aligned}
$$

0.2

Instabilities

-0.3

Large (isotropic) tensors?

Can we have:

$$
\mathcal{L}_{\gamma} \propto \dot{\gamma}_{i j}^{2}-c_{\gamma}^{2}\left(\partial_{k} \gamma_{i j}\right)^{2}
$$

with $c_{\gamma} \ll 1$?

That is, can we have $r \gg 16 \epsilon$?
Absence of ghosts $E<H \Longrightarrow$ at most linear in

$$
R_{\mu \nu \rho \sigma}
$$

(cf. Creminelli et al., 2014)

Try:

$$
\mathcal{L}=F(X, Y, Z)+\frac{1}{2} M_{\mathrm{Pl}}^{2}\left(R+\alpha R^{\mu \nu} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J} B_{I J}^{-1}\right)
$$

$\Longrightarrow c_{\gamma}^{2}=1+\alpha$
But also $\quad c_{T}^{2} \simeq \frac{3}{4}\left(\frac{1}{1+\alpha}+c_{L}^{2}\right)$

$$
\zeta=\frac{1+\frac{4}{3} c_{T}^{2} \alpha(1+\alpha)}{1+\alpha} \vec{\nabla} \cdot \vec{\pi}
$$

$\Rightarrow r=16 \epsilon c_{L}^{5} \times \frac{(1+\alpha)^{3 / 2}}{\left(1+\alpha c_{L}^{2}\right)^{2}} \ll 16 \epsilon \quad\left(0<c_{L, T}^{2}<1\right)$

Conclusions

- Observed isotropy of the universe could be accidental
- Potentially anisotropic non-gaussianity
- Potentially anisotropic tensor modes
- No large tensors for now.. fundamental reason?

