Alberto Nicolis Columbia University

On tensor modes in solid inflation

w/ Jonghee Kang

(w/ Solomon Endlich and Junpu Wang, 2012)

Inflation: usual story

The early universe: homogeneous and isotropic

Sually modeled via $\varphi_a = \varphi_a(t)$

Time-translations spontaneously broken

the second se

Goldstone excitation = adiabatic perturbations

Systematic effective field theory

(Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)

Solid inflation

(Endlich, Nicolis, Wang 2012) (Gruzinov 2004)

- ${f o}$ t-independent, x-dependent fields: $arphi_a=arphi_a(ec x)$
- time-translations unbroken
- spatial translations and rotations, broken

Apparently violates:

1. homogeneity and isotropy

2. the need for a physical "clock"

internal symmetries gravity

Homogeneity and isotropy

 \oslash Ex: one scalar w/ vev $\langle \varphi \rangle = x$ If it has a shift symmetry $\varphi \rightarrow \varphi + a$ Indication unbroken diagonal translation $\begin{cases} x \to x - a \\ \varphi \to \varphi + a \end{cases}$

Rotations still broken _____ need 3 fields

3 scalars:

vevs:

 $\phi^{I}(\vec{x},t) \qquad I = 1, 2, 3$ $\langle \phi^{I} \rangle = x^{I}$

If internal symmetries:

 $\phi^{I} \to \phi^{I} + a^{I}$ $\phi^{I} \to SO(3) \phi^{I}$

then unbroken diagonal subgroups

This is a solid

EFT for solids

Dof: volume elements' positions $\phi^{I}(\vec{x},t)$ I = 1, 2, 3

Action

$B^{IJ} \equiv \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J}$

$\mathcal{L} = F\left([B], \frac{[B^2]}{[B]^2}, \frac{[B^3]}{[B]^3}\right) + \dots \qquad [\dots] = \operatorname{Tr}(\dots)$ $\left(X, Y, Z\right)$

(Dubovsky, Gregoire, Nicolis, Rattazzi 2006) (Son 2005)

Problem

The universe is expanding. Your closet is not.

Get more closet space: ManhattanMiniStorage.com

Stress-energy tensor

 $T_{\mu\nu} \sim (F, F') \times (g_{\mu\nu}, \partial_{\mu}\phi^{I}\partial_{\nu}\phi^{J}) \times (\delta^{IJ}, B^{IJ}, B^{IK}B^{KJ})$

On the background $B^{IJ} = \delta^{IJ}$

$$T_{\mu\nu} \to \begin{cases} \rho = -F \\ \rho + p = -2 \, X F_X \end{cases}$$

inflation ("slow roll") small $F_X = \mathcal{O}(\epsilon)$

Approximate internal scale invariance

 $\phi^I \to \lambda \phi^I$

Cosmological perturbations

$$\phi^{I} = x^{I} + \pi^{I}$$
$$g_{\mu\nu} = g^{\text{FRW}}_{\mu\nu} + \delta g_{\mu\nu}$$

U.G.: $F(B^{IJ}) \rightarrow F(g^{IJ})$ Lorentz violating massive gravity

Very roughly:

 $\mathcal{L}_2 \sim F_X \cdot (\partial \pi)^2$ $\mathcal{L}_3 \sim F \cdot (\partial \pi)^3$ $\zeta \sim \vec{\nabla} \cdot \vec{\pi}$

$$\begin{cases} \langle \zeta \zeta \rangle \sim \frac{1}{\epsilon} \frac{1}{c_L^5} \frac{H^2}{M_{\rm Pl}^2} \\ \frac{\mathcal{L}_3}{\mathcal{L}_2} \sim \frac{1}{\epsilon} \frac{1}{c_L^2} \zeta \end{cases}$$

(cf. $\frac{1}{\epsilon} \frac{1}{c_L} \frac{H^2}{M_{
m Pl}^2}$)

(cf. $rac{1}{c_L^2}\zeta$)

$$S^{(2)} = S^{(2)}_{\gamma} + S^{(2)}_{T} + S^{(2)}_{L}$$

$$S^{(2)}_{\gamma} = \frac{1}{4}M^{2}_{\text{Pl}}\int dt \, d^{3}x \, a^{3} \Big[\frac{1}{2}\dot{\gamma}^{2}_{ij} - \frac{1}{2a^{2}} \big(\partial_{m}\gamma_{ij}\big)^{2} + 2\dot{H}c^{2}_{T} \,\gamma^{2}_{ij}\Big]$$

$$S^{(2)}_{T} = M^{2}_{\text{Pl}}\int dt \int_{\vec{k}} a^{3} \Big[\frac{k^{2}/4}{1 - k^{2}/4a^{2}\dot{H}} \left|\dot{\pi}^{i}_{T}\right|^{2} + \dot{H}c^{2}_{T} \,k^{2} \left|\pi^{i}_{T}\right|^{2}\Big]$$

$$S^{(2)}_{L} = M^{2}_{\text{Pl}}\int dt \int_{\vec{k}} a^{3} \Big[\frac{k^{2}/3}{1 - k^{2}/3a^{2}\dot{H}} \left|\dot{\pi}_{L} - (\dot{H}/H)\pi_{L}\right|^{2} + \dot{H}c^{2}_{L} \,k^{2} \left|\pi_{L}\right|^{2}\Big]$$

$$S_3 \simeq \int d^4x \left(-\frac{1}{243} F_Y \right) \cdot \left\{ 16 \left[\partial \pi \right]^3 - 36 \left[\partial \pi \right]^2 \left(\left[\partial \pi \cdot \partial \pi^T \right] + \left[(\partial \pi)^2 \right] \right) + 18 \left[(\partial \pi)^3 \right] + 18 \left[(\partial \pi)^2 \cdot \partial \pi^T \right] \right\},$$

Observables

 $n_S - 1 = 2\epsilon c_L^2 - \eta - 5s$ $n_T - 1 = 2\epsilon c_L^2$ (mass term $\sim c_T^2$)

 $r = 16 \epsilon c_L^5$

Quadrupolar "squeezed limit"

 $\langle \zeta \zeta \zeta \rangle \to f_{NL} \times \langle \zeta \zeta \rangle \langle \zeta \zeta \rangle \times (1 - 3\cos^2 \theta)$

 $f_{NL} \sim \frac{1}{\epsilon} \frac{1}{c_L^2}$

2% overlap w/ "local" shape 39% w/ "equilateral" 32% w/ "orthogonal"

> (see also Shiraishi et al. 2012, Barnaby et al. 2012, Bartolo et al. 2013)

Anisotropic generalizations

 $\phi^I \to \phi^I + a^I$ $\phi^I \to SO(3) \phi^I$ discrete rotations

Yet, we want:

isotropic background

isotropic scalar spectrum

Background

Discrete subgroup of SO(3) with isotropic 2-index tensors? Ex: cubic group

$$O_{ij}^{(2)} = \hat{x}_i \hat{x}_j + \hat{y}_i \hat{y}_j + \hat{z}_i \hat{z}_j = \delta_{ij}$$

accidentally isotropic!

Scalar spectrum

$$\phi^I = x^I + \pi^I$$

$$\mathcal{L}_2 = O_{ij}^{(2)} \cdot \dot{\pi}_i \dot{\pi}_j + O_{ijkl}^{(4)} \cdot \partial_i \pi_j \partial_k \pi_l$$

Discrete subgroup of SO(3) with isotropic 4-index tensors? Ex: cubic group

 $O_{ijkl}^{(4)} = \delta_{ij}\delta_{kl}$ $\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}$ $\hat{x}_i\hat{x}_j\hat{x}_k\hat{x}_l + (\hat{x} \to \hat{y}, \hat{z})$

not isotropic!

Scalar 3-pt function:

$$\mathcal{L}_3 \supset O_{ijklmn}^{(6)} \cdot \partial_i \pi_j \,\partial_k \pi_l \,\partial_m \pi_n$$

Tensor spectrum:

$$\mathcal{L}_2 = O_{ijkl}^{(4)} \cdot \dot{\gamma}_{ij} \, \dot{\gamma}_{kl} + O_{ijklmn}^{(6)} \cdot \partial_i \gamma_{jk} \, \partial_l \gamma_{mn}$$

Looking for a discrete subgroup of SO(3) w/

 \odot Isotropic $O^{(2)}$

 \odot Isotropic $O^{(4)}$

| Anisotropic $O^{(6)}$

isotropic background, scalar spectrum anisotropic scalar 3-pt function, tensor spectrum

Only one possibility: icosahedral group

 $O_{ij}^{(2)} = \delta_{ij}$ $O_{ijkl}^{(4)} = \delta_{ij}\delta_{kl}$ $\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}$

 $O_{ijklmn}^{(6)} = 2(\gamma + 2)\delta_{ijklmn}$ + $(\gamma + 1)(\delta_{ijkl}\delta_{mn}\delta_{m,i+1} + \dots)$ + $(\delta_{ijkl}\delta_{mn}\delta_{m,i-1}+\dots)$

 $\gamma = (1 + \sqrt{5})/2$

Scalar 3-pt function

Messy expression — depends on vectors k2, k3 Two independent parameters α, β Anisotropies $\propto (\beta - 9/2)$

Overlap with standard shapes

 $\propto (eta - 8)$

 $\beta = 8$ completely anisotropic case

 $\bar{f}_{\rm NL}(\theta_2) = -\frac{\alpha}{\epsilon c_L^2} \left[\frac{19415}{378} (\beta - 8) + \frac{104135}{6048} (2\beta - 9) P_6(\cos \theta_2) \right]$

Tensor spectrum

No anisotropy to lowest-order in derivatives:

 $F(B^{IJ}) = F(g^{\mu\nu}\partial_{\mu}\phi^{I}\partial_{\nu}\phi^{J}) \quad \not \rightarrow \quad \partial\gamma\partial\gamma$ $\rightarrow \quad O^{(4)}_{ijkl} \cdot \gamma_{ij}\gamma_{kl}$

Needs higher-derivative couplings – e.g.: $\mathcal{L} \supset \frac{1}{M^2} \left(R^{\mu\nu\rho\sigma} \partial_\mu \phi^I \partial_\nu \phi^J \partial_\rho \phi^K \partial_\sigma \phi^L \right)^3 \cdot T_{\text{aniso}}$

 $R_{\mu\nu\rho\sigma} \sim H^2 + H\partial\gamma + \partial\gamma\partial\gamma + \partial\partial\gamma$

However:

 $R_{\mu\nu\rho\sigma} \sim H^2 + H\partial\gamma + \partial\gamma\partial\gamma + \partial\partial\gamma$

ghosts at $E_* \sim H/\delta c_\gamma$

effect is perturbative: $\delta c_\gamma \ll 1$

Same conclusion for other higher derivative operators E.g.

 $\nabla \nabla \phi = (H + \partial \gamma)(1 + \partial \pi) + \partial \partial \pi$

 $\nabla \nabla \phi \dots \nabla \nabla \phi \cdot T_{aniso}$

Regardless of where it comes from:

$$\mathcal{L}_{\gamma} \propto \dot{\gamma}_{ij}^2 - (\partial_k \gamma_{ij})^2 - \delta c_{\gamma}^2 T_{\mathrm{aniso}}^{ijklmn} \partial_i \gamma_{jk} \partial_l \gamma_{mn}$$

0.2

-0.2

Instabilities

-0.3

Large (isotropic) tensors?

Can we have:

$$\mathcal{L}_\gamma \propto \dot{\gamma}_{ij}^2 - c_\gamma^2 (\partial_k \gamma_{ij})^2$$

with $c_\gamma \ll 1$?

That is, can we have $r \gg 16\epsilon$?

Absence of ghosts E < H

at most linear in

 $R_{\mu\nu\rho\sigma}$

(cf. Creminelli et al., 2014)

Try:

$$\mathcal{L} = F(X, Y, Z) + \frac{1}{2} M_{\mathrm{Pl}}^2 \left(R + \alpha \, R^{\mu\nu} \, \partial_\mu \phi^I \partial_\nu \phi^J \, B_{IJ}^{-1} \right)$$

$$c_{\gamma}^2 = 1 + \alpha$$

...

But also

$$c_T^2 \simeq \frac{3}{4} \left(\frac{1}{1+\alpha} + c_L^2 \right)$$
$$\zeta = \frac{1 + \frac{4}{3} c_T^2 \alpha (1+\alpha)}{1+\alpha} \vec{\nabla} \cdot \vec{\pi}$$

$$r = 16\epsilon c_L^5 \times \frac{(1+\alpha)^{3/2}}{(1+\alpha c_L^2)^2} \ll 16\epsilon$$

 $(0 < c_{L,T}^2 < 1)$

Conclusions

Observed isotropy of the universe could be accidental

Potentially anisotropic non-gaussianity

Potentially anisotropic tensor modes

No large tensors for now.. fundamental reason?