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The early universe: homogeneous and 
isotropic


Usually modeled via


Time-translations spontaneously broken


Systematic effective field theory

'a = 'a(t)

Goldstone excitation = adiabatic perturbations

(Creminelli, Luty, Nicolis, Senatore 2006

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007)
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Inflation: usual story



t-independent, x-dependent fields:


time-translations unbroken


spatial translations and rotations, broken

3

Solid inflation

�a = �a(⇥x)

Apparently violates:

1. homogeneity and isotropy


2. the need for a physical “clock”

internal

symmetries

gravity

(Endlich, Nicolis, Wang 2012)
(Gruzinov 2004)



Ex: one scalar w/ vev 


If it has a shift symmetry


unbroken diagonal translation 
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Homogeneity  and isotropy

h�i = x

� ! �+ a

� ! �+ a
x ! x� a

}

Rotations still broken need 3 fields
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I = 1, 2, 3�I(⇧x, t)3 scalars:

vevs: h�Ii = xI

If internal symmetries:

�I � SO(3) �I
�I � �I + aI

then unbroken diagonal subgroups

This is a solid



Dof:   volume elements’ positions

I = 1, 2, 3�I(⇧x, t)
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EFT for solids

h�Iieq = x

I
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Action

BIJ ⌘ ⇥µ�
I⇥µ�J

L = F
⇣
[B],

[B2]

[B]2
,
[B3]

[B]3

⌘
+ . . .

(X,Y, Z)

[. . . ] = Tr(. . . )

(Dubovsky, Gregoire, Nicolis, Rattazzi 2006)
(Son 2005)
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Problem
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Stress-energy tensor

On the background BIJ = �IJ

inflation (“slow roll”) small

Approximate internal 
scale invariance �I ! ��I

FX = O(�)

Tµ⌫ ⇠ (F, F 0)⇥ (gµ⌫ , @µ�
I@⌫�

J)⇥ (�IJ , BIJ , BIKBKJ)

Tµ⌫ !
⇢

⇢ = �F
⇢+ p = �2XFX
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Cosmological perturbations

⇥I = xI + �I

gµ� = gFRWµ� + �gµ�

Very roughly: L2 � FX · (⇥�)2

L3 � F · (⇥�)3

⇣ � ~⇥ · ~⇡

h⇥⇥i ⇠ 1

�

1

c5L

H2

M2
Pl

(cf.             )
1

�

1

cL

H2

M2
Pl

L3

L2
� 1

�

1

c2L
⇥ (cf.       )1

c2L
�

⇢

F (BIJ) ! F (gIJ)

Lorentz violating

massive gravity

U.G.:
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where the non-local piece of R comes from solving the constraint equation for NL.
Two peculiarities concerning the behavior of these variables during solid inflation are

worth mentioning at this point. First, R and ⇣ do not coincide on super-horizon scales.
Second, neither of them is conserved. These properties are in sharp contrast with what
happens for adiabatic perturbations in standard cosmological models, and stem from the
fact that during solid inflation, there are no adiabatic modes of fluctuation! We will clarify
why this is the case in sect. 9.

6 Two-point functions

Upon plugging the expressions (5.11)–(5.13) back into the action, the quadratic action for
tensor, vector, and scalar fluctuations reads:

S(2) = S(2)

� + S(2)

T + S(2)

L (6.1)

S(2)

� = 1

4

M2

Pl

Z

dt d3x a3
h

1

2

�̇2

ij � 1

2a2

�

@m�ij
�

2

+ 2Ḣc2T �2

ij

i

(6.2)

S(2)

T = M2

Pl

Z

dt

Z

~k

a3


k2/4

1� k2/4a2Ḣ

�

�⇡̇i
T

�

�

2

+ Ḣc2T k2

�

�⇡i
T

�

�

2

�

(6.3)

S(2)

L = M2

Pl

Z

dt

Z

~k

a3


k2/3

1� k2/3a2Ḣ

�

�⇡̇L � (Ḣ/H)⇡L

�

�

2

+ Ḣc2L k
2

�

�⇡L

�

�

2

�

. (6.4)

Notice the quite nontrivial k-dependence for S(2)

T and S(2)

L in Fourier space, which would
translate into a (spacially) non-local structure in real space.

6.1 Tensor perturbations

Using (6.2) we can calculate the two-point function of the tensor perturbations. As usual,
it is a simpler calculation than the scalar case and will serve as a warmup. We decompose
the tensor modes into their polarizations

�ij(~k, t) =
X

s=±
✏sij(~k)�

s(~k, t) , (6.5)

with ✏sij✏
s0⇤
ij = 2�ss

0
. The transverse, traceless conditions on �ij now simply become ✏ii =

ki✏ij = 0. We further decompose each �s(~k, t) as

�s(~k, t) = �s
cl(~k, t) a

s(~k) + �s
cl(~k, t)

⇤ as†(�~k) . (6.6)

where as(~k)† and as(~k) are creation and annihilation operators obeying the usual commuta-
tion relation

[as(~k), as
0†(~k0)] = (2⇡)3�3(~k � ~k0) �ss

0
, (6.7)

and where the classical solution �s
cl(~k, t) obeys the equations of motion obtained by varying

(6.2):
d2

d⌧ 2
�cl + 2aH

d

d⌧
�cl +

�

k2 + 4✏a2H2c2T
�

�cl = 0 . (6.8)
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(recall that F and FY have mass-dimension four.) If FY is of the same order as F , this is
simply

⇤n ⇠ F 1/4 · ✏ n
4n�8 , (FY ⇠ F ) , (3.30)

which, for n � 3 and ✏ ⌧ 1, is an increasing function of n. The lowest of all such scales—
which defines the strong coupling scale of the theory—is thus that associated with n = 3:

⇤
strong

= ⇤
3

⇠ F 1/4✏3/4 , (FY ⇠ F ) . (3.31)

If on the other hand FY is much smaller that F , say of order ✏F , we get that all interactions
are weighed by the same scale, which then defines strong coupling:

⇤
strong

⇠ ⇤n ⇠ F 1/4 · ✏1/4 , (FY ⇠ ✏F ) . (3.32)

Either way, the strong coupling scale is a fractional power of ✏ smaller than the scale asso-
ciated with the solid’s energy density.

If the propagation speeds cL, cT are non-relativistic, the estimate of the strong coupling
scale depends on the specific structure of the interaction terms, that is, on how many time-
derivatives there are. In general, one may expect stronger interactions, i.e., lower strong-
coupling scales for non-relativistic excitations (see e.g. [9] for a systematic analysis of this
phenomenon in a di↵erent limit of our solid action.) Notice first of all that, because of (3.18),
the transverse phonon speed cT is always relativistic,

3

4

< c2T < 1 . (3.33)

So, our estimates above always work for the transverse phonons’ self-interactions. For lon-
gitudinal phonons with cL ⌧ 1, we can repeat the estimate using the cubic interaction,
assuming this is still a good indicator of the strong coupling scale of the theory. Expanding
(2.6) up to cubic order, and neglecting terms that are proportional to X-derivatives of F or
to (FY + FZ), we find

S
3

'
Z

d4x
�� 1

243

FY

� ·
n

16 [@⇡]3 � 36 [@⇡]2
�

[@⇡ · @⇡T ] + [(@⇡)2]
�

+18 [(@⇡)3] + 18 [(@⇡)2 · @⇡T ]
o

, (3.34)

where (@⇡)ij ⌘ @i⇡j is the matrix of spacial derivatives of ⇡, @⇡T is its transpose, and the
brackets stand for the trace. Notice in particular that there are no time-derivatives. For
cL ⌧ 1, one can estimate the strong coupling scale via the following trick [9]. We can redefine
the time variable as t ! t0/cL. Now in the kinetic energy term there is no hierarchy between
time- and space-derivatives,

S
2

⇠
Z

d4x ✏F · �⇡̇2 � c2L(r⇡)2
� !

Z

d4x0 ✏F cL · (@0⇡)2 , (3.35)

and we can apply the usual order-of-magnitude estimates as for relativistic theories. The
cubic interaction becomes schematically

S
3

!
Z

d4x0 FY

cL
· (@0⇡)3 . (3.36)

13



12

Observables
nS � 1 = 2� c2L � ⇥ � 5s

(mass term        )⇠ c2TnT � 1 = 2� c2L

h⇣⇣⇣i /

r = 16 ✏c5L
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Quadrupolar “squeezed limit”

fNL ⇠ 1

�

1

c2L

2% overlap w/ “local” shape
39% w/ “equilateral”

h���i ! fNL ⇥ h��ih��i ⇥ (1� 3 cos

2 ⇥)

32% w/ “orthogonal”

(see also Shiraishi et al. 2012, Barnaby 
et al. 2012, Bartolo et al. 2013)
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Anisotropic generalizations

�I � SO(3) �I
�I � �I + aI

discrete rotations

Yet, we want:

isotropic background


isotropic scalar spectrum
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Background

T00

Tij / �ij

Discrete subgroup of SO(3) with isotropic 2-index tensors? 

Ex: cubic group

x̂

ŷ

ẑ O
(2)
ij = x̂ix̂j + ŷiŷj + ẑiẑj = �ij

accidentally isotropic!



17

Scalar spectrum

⇥I = xI + �I

L2 = O
(2)
ij · ⇡̇i⇡̇j +O

(4)
ijkl · @i⇡j@k⇡l

Discrete subgroup of SO(3) with isotropic 4-index tensors? 

Ex: cubic group

x̂

ŷ

ẑ
O

(4)
ijkl = �ij�kl

�ik�jl + �il�jk

x̂ix̂j x̂kx̂l + (x̂ ! ŷ, ẑ)

not isotropic!



18

Scalar 3-pt function:

L3 � O
(6)
ijklmn · @i⇡j @k⇡l @m⇡n

Tensor spectrum:

L2 = O
(4)
ijkl · �̇ij �̇kl +O

(6)
ijklmn · @i�jk @l�mn
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Looking for a discrete subgroup of SO(3) w/

Isotropic 


Isotropic


Anisotropic

O(2)

O(4)

O(6)

{ isotropic background, scalar spectrum

anisotropic scalar 3-pt function,

tensor spectrum
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Only one possibility: icosahedral group

O
(2)
ij = �ij

O
(4)
ijkl = �ij�kl

�ik�jl + �il�jk

O
(6)
ijklmn = 2(� + 2)�ijklmn

+ (� + 1)(�ijkl�mn�m,i+1 + . . . )

+ (�ijkl�mn�m,i�1 + . . . )

� = (1 +
p
5)/2
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Scalar 3-pt function
Messy expression — depends on vectors k2, k3

Anisotropies

x

y

z

~k
2

x0

y0

~k
3

Figure 2: The coordinate system defined in the text. The ẑ, ẑ0 = ˆk
2

, and x̂0 axes all lie in the same

plane.

Following the standard conventions for correlation functions of the Newtonian potential
�,

� = 3

5

⇣ (5.6)
⌦

�(~k
1

)�(~k
2

)
↵

= (2⇡)3�3(~k
1

+ ~k
2

)
�

�

k3

1

(5.7)

⌦

�(~k
1

)�(~k
2

)�(~k
3

)
↵

= (2⇡)3�3(~k
1

+ ~k
2

+ ~k
2

)f(~k
1

,~k
2

,~k
3

) , (5.8)

we define f
NL

using equilateral configurations:

f(~k
1

,~k
2

,~k
3

)
�

�

equil

= f
NL

6�2

�

k6

1

. (5.9)

However, the equilateral-triangle condition only fixes the relative angle ✓
3

, and so in our case
the resulting f

NL

depends non-trivially on the other angles, �
2

, �
3

, and ✓
2

. To get a readable
expression, we average f

NL

over �
2

and �
3

,

f̄
NL

(✓
2

) ⌘ 1

4⇡2

Z

d�
2

d�
3

f
NL

(✓
2

,�
2

,�
3

) . (5.10)

The remaining dependence on ✓
2

will still be a measure of anisotropy. For our three-point
function, we get:

�
�

=
9

100

H2

M2

p

· 1

✏c5L
(5.11)

f(~k
1

,~k
2

,~k
3

) = �15

2

↵

✏c2L
·�2

�

· Q(~k
1

,~k
2

,~k
3

)U(k
1

, k
2

, k
3

)

k3

1

k3

2

k3

3

(5.12)

f̄
NL

(✓
2

) = � ↵

✏c2L

⇥

19415

378

(� � 8) + 104135

6048

(2� � 9)P
6

(cos ✓
2

)
⇤

, (5.13)
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The remaining dependence on ✓
2

will still be a measure of anisotropy. For our three-point
function, we get:
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9
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H2
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) = � ↵
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(2� � 9)P
6

(cos ✓
2

)
⇤

, (5.13)

14

Overlap with 
standard shapes

Two independent parameters ↵,�

/ (� � 9/2)

/ (� � 8)

� = 8 completely 
anisotropic case
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Tensor spectrum

No anisotropy to lowest-order in derivatives:

F (BIJ) = F (gµ⌫@µ�
I@⌫�

J) ! @�@�

! O
(4)
ijkl · �ij �kl

Needs higher-derivative couplings — e.g.:

Rµ⌫⇢� ⇠ H2 +H@� + @�@� + @@�

(Rµ⌫⇢�@µ�
I@⌫�

J@⇢�
K@��

L)3 · T
aniso

L � 1

M2

�c2� =
H4

M2M2
Pl
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However:

Rµ⌫⇢� ⇠ H2 +H@� + @�@� + @@�

ghosts at E⇤ ⇠ H/�c�

�c� ⌧ 1effect is perturbative:

Same conclusion for other higher derivative operators
E.g.

rr� . . .rr� · T
aniso

rr� = (H + @�)(1 + @⇡) + @@⇡
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Regardless of where it comes from:

L� / �̇2

ij � (@k�ij)
2 � �c2� T

ijklmn
aniso

@i�jk @l�mn

spectra: h�+�+i = h����i

h�+��i 6= 0
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0.2

-0.2
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Instabilities

-0.3
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Large (isotropic) tensors?

L� / �̇2
ij � c2�(@k�ij)

2

c� ⌧ 1

Can we have:

with ?

That is, can we have r � 16✏ ?

(cf. Creminelli et al., 2014)

Absence of ghosts E < H at most linear in 
Rµ⌫⇢�
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Try:

L = F (X,Y, Z) +
1

2
M2

Pl

�
R+ ↵Rµ⌫ @µ�

I@⌫�
J B�1

IJ

�

c2� = 1 + ↵

But also c2T ' 3

4

⇣ 1

1 + ↵
+ c2L

⌘

⇣ =
1 + 4

3c
2
T↵(1 + ↵)

1 + ↵
~r · ~⇡

…

r = 16✏c5L ⇥ (1 + ↵)3/2

(1 + ↵c2L)
2
⌧ 16✏ (0 < c2L,T < 1)



Observed isotropy of the universe could be 
accidental


Potentially anisotropic non-gaussianity


Potentially anisotropic tensor modes


No large tensors for now.. fundamental 
reason?
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Conclusions


