Sourced GW from axion inflation

Marco Peloso, University of Minnesota

- Sourced scalar and tensor perturbations
- CMB phenomenology
- Interferometer phenomenology

In collaboration with

Barnaby, Biagetti, Crowder, Dimastrogiovanni, Fasiello,
Garcia-Bellido, Kim, Komatsu, Mandic, Mukohyama, Moxon,
Namba, Nilles, Pajer, Pearce, Shiu, Shiraishi, Sorbo, Unal, Zhou

- CMB in agreement with simplest models of slow-roll inflation

$$
r \equiv \frac{P_{\mathrm{GW}}}{P_{\zeta}}, n_{s}-1 \equiv \frac{d \ln P_{\zeta}}{d \ln k}, f_{\mathrm{NL}} \sim \frac{\left\langle\zeta^{3}\right\rangle}{\left\langle\zeta^{2}\right\rangle^{2}}=\bigcirc(\epsilon, \eta) \quad \begin{aligned}
& \epsilon \equiv \frac{M_{p}^{2}}{2}\left(\frac{V_{, \phi}}{V}\right)^{2} \ll 1 \\
& \eta \equiv M_{p}^{2} \frac{V_{, \phi \phi}}{V} \ll 1
\end{aligned}
$$

- Flatness and gaussianity \rightarrow small inflaton self-couplings (e. g., $\Delta V=\frac{\lambda}{4} \phi^{4} \Rightarrow \lambda<10^{-13}$)
- Shift symmetry on couplings to other fields
$\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+V_{\text {shift }}(\phi)+\frac{c_{\psi}}{f} \partial_{\mu} \phi \bar{\psi} \gamma^{\mu} \gamma_{5} \psi+\frac{\alpha}{f} \phi F_{\mu \nu} \tilde{F}^{\mu \nu}$
has the advantage that
\Rightarrow Smallness of $V_{\text {shift }}$ technically natural. $\Delta V \propto V_{\text {shint }}$
Constrained couplings to matter (predictivity)
$\mathcal{L} \supset-\frac{1}{4} F^{2}-\frac{\alpha}{4 f} \phi^{(0)} F \tilde{F}$
Classical motion $\phi^{(0)}(t)$ affects dispersion relations of \pm helicities
$\Rightarrow\left(\frac{\partial^{2}}{\partial \tau^{2}}+k^{2} \mp 2 a H k \xi\right) A_{ \pm}(\tau, k)=0 \quad \xi \equiv \frac{\alpha \dot{\phi}^{(0)}}{2 f H} \simeq$ const.

One tachyonic helicity at horizon crossing
Anber, Sorbo '06

- Growth $A \sim \mathrm{e}^{\pi \xi}$ at hor. cross.
- Then diluted away
(UV \& IR finite)
$\delta \ddot{\phi}+3 H \delta \dot{\phi}-\frac{\vec{\nabla}^{2}}{a^{2}} \delta \phi+m^{2} \delta \phi=\frac{\alpha}{f} \vec{E} \cdot \vec{B}$
(Additional interactions due to δg negligible for $\frac{\alpha}{f} \gg \frac{1}{M_{p}}$)

$\delta \phi=\delta \phi_{\text {vacuum }}+\delta \phi_{\text {inv.decay }}$
Uncorrelated, $\quad\left\langle\delta \phi^{n}\right\rangle=\left\langle\delta \phi_{\text {vac }}^{n}\right\rangle+\left\langle\delta \phi_{\text {inv.dec }}^{n}\right\rangle$

Barnaby, MP '10

Barnaby, Namba, MP '11
$P_{\zeta}(k) \simeq \mathcal{P}_{v}\left[1+7.5 \cdot 10^{-5} \mathcal{P}_{v} \frac{e^{4 \pi \xi}}{\xi^{6}}\right]$
$(\xi>1)$

$$
\begin{gathered}
\mathcal{P}_{v}^{1 / 2} \equiv \frac{H^{2}}{2 \pi|\dot{\phi}|} \\
\xi \equiv \frac{\alpha}{f} \frac{|\dot{\phi}|}{2 H}
\end{gathered}
$$

At any moment, only δA with $\lambda \sim H^{-1}$ present

Nearly equilateral NG

$$
f_{\mathrm{NL}}^{\text {equil }}=-4 \pm 43 \quad \text { Planck }{ }^{\prime} 15
$$

$\delta A \sim \mathrm{e}^{\pi \xi}$ so large variation in a small window of $\xi=O$ (1)
$\xi=\mathrm{O}(1)$ for $f / \alpha=\mathrm{O}\left(10^{16} \mathrm{GeV}\right)$

More production \rightarrow smaller r
(sourced $G W \ll$ sourced $\delta \phi$)

More production $\left(\frac{\alpha}{f} F \tilde{F}\right)$

- $f \gtrsim 7 M_{p}$ needed in $V=\wedge^{4}\left[1+\cos \left(\frac{\phi}{f}\right)\right]$. Values $f \simeq 10^{-2} M_{p}$ relevant for models with sub-Planckian axion scale, but effective $\Delta \phi>M_{p}$ E.g., Monodromy, N -flation, Aligned Natural Inflation

$$
\begin{aligned}
& V=\Lambda_{1}^{4}\left[1-\cos \left(\frac{\theta}{f_{1}}+\frac{\rho}{g_{1}}\right)\right]+\Lambda_{2}^{4}\left[1-\cos \left(\frac{\theta}{f_{2}}+\frac{\rho}{g_{2}}\right)\right] \\
& f_{\text {eff }} \gg f_{i}, g_{i} \text { if } \quad \frac{f_{1}}{g_{1}} \simeq \frac{f_{2}}{g_{2}}
\end{aligned}
$$

(gravitational instanton corrections may still be a problem if $f_{\text {eff }}>M_{p}$)

$$
\alpha \equiv \frac{f_{1} g_{2}-f_{2} g_{1}}{f_{1} g_{2}+f_{2} g_{1}} \ll 1
$$

MP, Unal '15

$$
\begin{aligned}
& \psi \equiv \text { heavy combination } \\
& \text { Effective scale : } f_{\psi}=O\left(f_{i}, g_{i}\right)
\end{aligned}
$$

$$
\phi \equiv \text { light combination }
$$

Effective scale : $f_{\phi}=\mathrm{O}\left(\frac{f_{i}}{\alpha}, \frac{g_{i}}{\alpha}\right)$

ϕ / f_{ϕ}

Fields rescaled
\simeq curvature
in 2 directions
ψ much heavier
Inflation along
valleys $\frac{\partial V}{\partial \psi}=0$

Stable valleys, $\frac{\partial V}{\partial \psi}=0, \frac{\partial^{2} V}{\partial \psi^{2}}>0 \rightarrow$ inflationary trajectories Unstable crests, $\frac{\partial V}{\partial \psi}=0, \frac{\partial^{2} V}{\partial \psi^{2}}<0$

For some parameters inflationary trajectories ending because (1) reach a minimum or (2) become unstable in heavy direction

Trajectories (2) have a flatter potential (\equiv smaller $\epsilon \propto V^{\prime 2} / V^{2}$) and so smaller GW (recall $r=16 \epsilon$)

Connected to minima

Disconnected

GW at CMB scales

- With Iatest Keck Array : $r<0.07$

- Strong experimental program, from ground, balloon, and (proposed) satellite

Ground Based				Balloons		
	Chile	Have data	Current or planned freqs			
*	ABS		145 GHz	* EBEX	Have data	Current or planned freqs
	ACTPol/AdvACt		$30,40,90,150,230 \mathrm{GHz}$$90,150 \mathrm{GHz}$			
	POLARBEAR					
*	CLASS		40, 90, 150 GHz			150, 250, 210 GHz
Antarctica				LPSE	TBD	5 chan $40-250 \mathrm{GHz}$
*	BICEP/KECK		90, 150, 220 GHz	* PIPER	2015	200, 270, 350, 600 GHz
	SPTPol		$90,150 \mathrm{GHz}$ $90,150,220 \mathrm{GHz}$	* SPIDER		$90,150,280 \mathrm{GHz}$
	QUBIC-Bolo int.	2016	90, 150, 220 GHz	* SPIDER		90, 150, 280 GHz
Elsewhere (for now)						
	B-Machine-WMRS		40 GHz			
*	GroundBIRD, LiteBIRD	2016	150 GHz			
*	GLP - Greenland	TBD	150, 210, 270 GHz			
*	MuSE-Multimoded	TBD	$44,95,145,225,275 \mathrm{GHz}$		Ferr	a, Dec. 2014
	QUIJOTE -Canaries, HEM		11-20, 30 GHz			

- Multi-frequency is key, to eliminate dust

CMB-S4 Science Book

2.6.3 Distinguishing vacuum fluctuations from other particle physics sources of B modes

- Vacuum modes : $V^{1 / 4}=10^{16} \mathrm{GeV}\left(\frac{r}{0.01}\right)^{1 / 4} \quad . \quad \Delta \phi \gtrsim M_{p}\left(\frac{r}{0.01}\right)^{1 / 2}$ How robust ?

Cook, Sorbo '11
$\mathcal{L}=\left(\phi-\phi_{*}\right)^{2} \chi^{2} \quad$ Senatore, Silverstein, Zaldarriaga '11
$\mathcal{L}=\sigma F \tilde{F} \quad$ Barnaby, Moxon, Namba, MP, Shiu, Zhou '12
$\mathcal{L}=\frac{1}{2}\left(\delta \sigma^{\prime 2}-c_{s}^{2}(\nabla \delta \sigma)^{2}\right) \quad, c_{s} \ll 1 \quad$ Biagetti, Fasiello, Riotto '13
Biagetti, Dimastrogiovanni, Fasiello, MP '14

(standard GR and QM)

Alternative mechanism in chromonatural inflation Maleknejad; Obata, Soda; Dimastrogiovanni, Fastello Fujita; Adshead, Martinec, Sfakianakis, Wyman '16

A field X produced during inflation, and $X \rightarrow h_{\text {sourced }} \gg h_{\text {vacuum }}$

- Real question $h_{\text {sourced }}$ vs. $\zeta_{\text {sourced }}$. Whatever sources GW is also at least gravitationally coupled to $\zeta \quad$ Barnaby, MP '10; Barnaby et al' 12;

Burst of particle production

$$
V=V(\phi)+\frac{g^{2}}{2}\left(\phi-\phi_{*}\right)^{2} \chi^{2}
$$

Chung, Kolb, Riotto, Tkachev '99
Romano, Sasaki '08
Barnaby, Huang, Kofman, Pogosyan '09
Green, Horn, Senatore, Silverstein '09
Lopez Nacir, Porto, Senatore, Zaldarriaga '11
Pearce, MP, Sorbo '16

- For most of the evolution, $m_{\chi} \sim g \phi, g \phi_{*} \gg H$, no effect
- At $\phi=\phi_{*}$, nonadiabatic m_{χ} variation
$\Rightarrow \quad n_{\chi}\left(t_{*}\right)=\exp \left(-\frac{\pi k^{2}}{g \dot{\phi}}\right)$
Cook, Sorbo '11
Produced χ sources $\delta \phi$ (later). Also, source of GW

Analogously for $V(\phi)+\frac{g^{2}}{2}\left(\phi-\phi_{*}\right)^{2} A_{\mu} A^{\mu}$
Cook, Sorbo '11

For the following slide, keep in mind that quanta of χ, A_{μ} produced when massless, but - due to motion of ϕ-quickly become non-relativistic.

- Few GW in simplest implementation (more possibilities Senatore et al '11) How to increase $h_{\text {sourced }}$ vs. $\zeta_{\text {sourced }}$?

Rule 1: Source of GW in a sector gravitationally coupled to inflaton
E. g. $\quad V(\phi)+V(\sigma)+\frac{g^{2}}{2}\left(\sigma-\sigma_{*}\right)^{2} A_{\mu} A^{\mu}$

Canonical inflaton / GW mode satisfy $\left(\partial_{\tau}^{2}-\frac{a^{\prime \prime}}{a}+k^{2}\right) Q_{i} \simeq J_{i}$, with
$J_{\phi} \simeq \frac{\dot{\phi}}{2 M_{p}^{2} H a} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[\widehat{k}_{i} \widehat{k}_{j}\left(M^{2}-\partial_{\tau}^{(1)} \partial_{\tau}^{(2)}\right)-M^{2} \delta_{i j}\right] A_{i}(\vec{p}) A_{j}(\vec{k}-\vec{p})$
$J_{\lambda}=\frac{\Pi_{m n, \lambda}^{*}(\hat{k})}{a M_{p}} \int \frac{d^{3} p}{(2 \pi)^{3 / 2}}\left[\delta_{m i} \delta_{n j}\left(-\partial_{\tau}^{(1)} \partial_{\tau}^{(2)}+M^{2}\right)+\epsilon_{m a i} \epsilon_{n b j} p_{a}(k-p)_{b}\right] A_{i}(\vec{p}) A_{j}(\vec{k}-\vec{p})$

Recall $\partial_{\tau} \simeq M \gg p$. Big cancellation on tensor source
Non-relativistic quanta have suppressed quadrupole moment

Rule 2: Source of GW should be relativistic

Both rules satisfied by $\quad V_{\phi}(\phi)+V_{\sigma}(\sigma)+\frac{\sigma}{f} F \tilde{F}$

- A_{+}produced by rolling $\sigma(t)$, different from inflaton ϕ
- Due to helicity, $A+A \rightarrow h$ stronger than $A+A \rightarrow \delta \phi$ (both gravitational)
- However, large $\delta \sigma$ production. As long as σ is rolling, linearly coupled (again, gravitational effect) to $\delta \phi$. Significant $A+A \rightarrow \delta \sigma \rightarrow \delta \phi$

Ferreira, Sloth '14

Rule 3: Source effective only for limited time
Namba, MP, Shiraishi, Sorbo, Unal '15

- Less time for δ source $\rightarrow \delta \phi$
- Can produce modes at $\ell \lesssim 100$ (good for GW, looser limits from NG)

Bump in $\delta_{\text {sourced }}, h_{\text {sourced }}$ on scales that left horizon while source effective

Simplest potential for a pseudoscalar : $V(\sigma)=\frac{\wedge^{4}}{2}\left[\cos \left(\frac{\sigma}{f}\right)+1\right]$ Slow roll sol. $\quad \dot{\sigma}=\frac{f H \delta}{\cosh \left[\delta H\left(t-t_{*}\right)\right]} \quad, \quad$ where $\delta \equiv \frac{\Lambda^{4}}{6 H^{2} f^{2}}=\frac{m^{2}}{3 H^{2}}$ $\dot{\sigma}_{\max }$ at $t=t_{*}$, when $\sigma=\frac{\pi f}{2} \quad \dot{\sigma} \neq 0 \quad$ for $\quad \Delta N \sim \frac{1}{\delta}$

Three examples with $\epsilon_{\phi}=10^{-5}$ (so that $r_{\text {vacuum }}=16 \epsilon$ is unobservable):

- Can be distinguished from vacuum by tensor running and $B B B$
(in principle also TB, but we found small S / N)

- Vacuum mechanism for GW very robust
- Under specific conditions, can produce visible r at arbitrarily small $r_{\text {vacuum }} /$ scale of inflation

> Ferreira, Ganc,

- Computations under perturbative control Noreña, Sloth '15 MP, Sorbo, Unal '16
- At small ϵ_{ϕ}, we have \dot{H} controlled by $\dot{\sigma}>\dot{\phi}$ at the bump.

Not a problem: In this model n_{s} controlled by $\eta_{\phi} \simeq 10^{-2} \gg \epsilon_{\phi}, \epsilon_{\sigma}$

GW at interferometers

Back to $\frac{\phi}{f} F \tilde{F}$
$\delta A \sim \mathrm{e}^{\pi \xi}$ and $\xi \propto \frac{\dot{\phi}}{H}$. Inflaton speeds up during inflation
\Rightarrow other interesting effects / signatures

- For instance, growth of $P_{\zeta}(k)$

Meerburg, Pajer '12
$P_{\zeta} \simeq \mathcal{P}_{v}\left[1+7.5 \cdot 10^{-5} \mathcal{P}_{v} \frac{\mathrm{e}^{4 \pi \xi}}{\xi^{6}}\right] \rightarrow \mathcal{P}_{*}\left(\frac{k}{k_{*}}\right)^{n_{s}-1}\left[1+\mathcal{P}_{*}\left(\frac{k}{k_{*}}\right)^{n_{s}-1} f_{2}(\xi(k)) \mathrm{e}^{4 \pi \xi_{*}}\left(\frac{k}{k_{*}}\right)^{2 \pi \xi_{*} \eta_{*}}\right]$
$\xi_{*}=\xi$ when Planck pivot scale left horizon

$$
\begin{array}{ll}
\text { NG : } \quad \xi_{*} \leq 2.5(95 \% \mathrm{CL}) \\
\mathrm{PS}: & 0.1 \leq \xi_{*} \leq 2.3(95 \% \mathrm{CL})
\end{array} \quad \text { Planck '15 }
$$

- $\dot{\phi}$ keeps increasing. Unique opportunity to explore later stags of inflation
- As ξ grows, δA grows, and additional interactions with $\delta \phi$ relevant Since $\dot{\phi} \rightarrow \xi \rightarrow \delta A$, first interaction estimated to be

$$
\delta \ddot{\phi}+3\left[1-\frac{2 \pi \xi}{3 H \dot{\phi}} \frac{\alpha}{f} \vec{E} \cdot \vec{B}\right] H \delta \dot{\phi}-\frac{\vec{\nabla}^{2}}{a^{2}} \delta \phi+m^{2} \delta \phi=\frac{\alpha}{f} \vec{E} \cdot \vec{B}
$$

Scalar perturbations may grow to above primordial black hole bound Linde, Mooij, Pajer '13

- Non-gaussian statistics of $\zeta_{\text {sourced }}$ enhances PBH fraction
- Large uncertainty, related to validity of the above equation
- Chiral GW production $A_{+} A_{+} \rightarrow h_{L}$ at interferometer scales

Cook, Sorbo '11; Barnaby, Pajer, MP '11; Domcke, Pieroni, Binétruy '16;

- New window on inflation; CMB / LSS for $10^{-4} \lesssim k / \mathrm{Mpc}^{-1} \lesssim 10^{-1}$; CMB distortions down to 10^{4}. This is 18 e-folds, say from 42 to 60
- LISA peaks at $N \sim 25$; AdvLIGO at $N \sim 15$
- In chaotic inflation, PBH bound (if accurate) prevents GW from being observable.

Linde, Mooij, Pajer '13

- PBH at $N \sim$ 10. GW (particularly LISA) probe \neq scales
- Due to $\propto \mathrm{e}^{\dot{\phi}}$, significant differences from a minor change of V

- If \mathcal{N} gauge fields (eg. non-abelian), more backreaction, and $\frac{P_{o w}}{P_{\mathrm{G}}} \propto \mathcal{N}^{2}$

- GW signal is non-gaussian, $k^{6}\left\langle h_{L}^{3}\right\rangle_{\text {equil }}^{\prime} \simeq 23 \mathrm{P}_{\mathrm{GW}}^{3 / 2}$ and chiral

Chiral GW @ interferometers

$$
\left\langle s_{1} s_{2}\right\rangle \propto \Omega_{G W}(f)\left[\gamma_{I}(f)+\Pi(f) \gamma_{\Pi}(f)\right]
$$

$$
\Pi \equiv \frac{P_{R}-P_{L}}{P_{R}+P_{L}} \quad \gamma \text { depend on orientations of the } \quad \text { detectors and on the GW frequency }
$$

Seto, Taruya '07 applied to current interferometers in Crowder, Namba, Mandic, Mukohyama, MP '12

- Need three detectors To determine Ω_{GW} and Π

Assume $|\Pi|=1$. How large does signal need to be to detect GW and exclude $\Pi=0$ at 2σ ?

Conclusions

- Simplest model for axion inflaton starts to be in tension with CMB. Not so for multi-fields. $f / \alpha \gtrsim 10^{-2} M_{p}$ for coupling to any gauge field.
- $r=16 \epsilon$ very robust. Possible to violate this (existence proof) but hard to source GW without disturbing ζ. Distinctive properties (running tensor tilt, non-gaussianity, chirality)
- Increase of signal at smaller scales naturally opens potential observational window on $N \sim 15-25$. Again, fight against $P_{\zeta} \rightarrow P B H$ Not a no-go (uncertainty, \neq scales). Distinctive properties can help discriminate against astrophysical background

