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• A production from φ kinetic energy. Resulting friction can be so
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ABSTRACT

The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints
on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators — separable template-fitting (KSW), binned, and
modal — we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from
temperature alone f local

NL = 2.5 ± 5.7, f equil
NL = �16 ± 70 and f ortho

NL = �34 ± 33 (68 % CL statistical). Combining temperature and polarization
data we obtain f local

NL = 0.8 ± 5.0, f equil
NL = �4 ± 43 and f ortho

NL = �26 ± 21 (68 % CL statistical). The results are based on comprehensive cross-
validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive
suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The e↵ect of time-domain de-
glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data
as preliminary, due to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we
present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios
that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-
violating tensor bispectra, and directionally-dependent vector models. We present a wide survey of scale-dependent feature and resonance models,
accounting for the “look-elsewhere” e↵ect in estimating the statistical significance of features. We also look for isocurvature NG, finding no signal
but obtaining constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is
constrained to be glocal

NL = (�9.0 ± 7.7) ⇥ 104 (68 % CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The
global picture that emerges is one of consistency with the premises of the ⇤CDM cosmology, namely that the structure we observe today was
sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.

Key words. cosmology: cosmic background radiation – cosmology: observations – cosmology: theory – cosmology: early Universe – cosmology:
inflation – methods: data analysis

1

ar
X

iv
:1

50
2.

01
59

2v
1 

 [a
str

o-
ph

.C
O

]  
5 

Fe
b 

20
15

At any moment, only �A with � ⇠ H�1 present

Correlation between �� of comparable size

modes of comparable wavelength

Nearly equilateral NG

Planck ’15

⇠ = O(1) for f/↵ = O
⇣
1016GeV

⌘

More production
⇣
↵
f F F̃

⌘

�A ⇠ e⇡⇠ so large variation in a

small window of ⇠ = O(1)

More production ! smaller r

(sourced GW ⌧ sourced ��)

At any moment, only �A with � ⇠ H�1 present

Correlation between �� of comparable size

modes of comparable wavelength

Nearly equilateral NG

Planck ’15

⇠ = O(1) for f/↵ = O
⇣
1016GeV

⌘

More production
⇣
↵
f F F̃

⌘

�A ⇠ e⇡⇠ so large variation in a

small window of ⇠ = O(1)

More production ! smaller r

(sourced GW ⌧ sourced ��)



• f >⇠ 7Mp needed in V = ⇤4
⇥
1+ cos

�
�
f

�⇤
. Values f ' 10�2Mp relevant

for models with sub-Planckian axion scale, but e↵ective �� > Mp

• f ⇠ 10�2Mp relevant for models with sub-Planckian axion scale,

but e↵ective �� > Mp, e.g. aligned inflation, N-flation, monodromy...

Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

fe↵ � fi, gi if
f1

g1
'

f2

g2

• For exact alignment
f1

g1
=

f2

g2
, one linear combination drops out of the potential

) Can obtain fe↵ � fi , gi in the nearly aligned case.

• Can have fe↵ > Mp even if fi, gi sub-Planckian (issue 1)

(gravitational instanton corrections may still be a problem if fe↵ > Mp)

• f >⇠ 7Mp needed in V = ⇤4
⇥
1+ cos

�
�
f

�⇤
. Values f ' 10�2Mp relevant

for

for models with sub-Planckian axion scale, but e↵ective �� > Mp

• f ⇠ 10�2Mp relevant for models with sub-Planckian axion scale,

but e↵ective �� > Mp, e.g. aligned inflation, N-flation, monodromy...

Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

fe↵ � fi, gi if
f1

g1
'

f2

g2

• For exact alignment
f1

g1
=

f2

g2
, one linear combination drops out of the potential

) Can obtain fe↵ � fi , gi in the nearly aligned case.

• Can have fe↵ > Mp even if fi, gi sub-Planckian (issue 1)

(gravitational instanton corrections may still be a problem if fe↵ > Mp)

• f >⇠ 7Mp needed in V = ⇤4
⇥
1+ cos

�
�
f

�⇤
. Values f ' 10�2Mp relevant for

models with sub-Planckian axion scale, but e↵ective �� > Mp

• f ⇠ 10�2Mp relevant for models with sub-Planckian axion scale,

but e↵ective �� > Mp, e.g. aligned inflation, N-flation, monodromy...

Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

fe↵ � fi, gi if
f1

g1
'

f2

g2

• For exact alignment
f1

g1
=

f2

g2
, one linear combination drops out of the potential

) Can obtain fe↵ � fi , gi in the nearly aligned case.

• Can have fe↵ > Mp even if fi, gi sub-Planckian (issue 1)

(gravitational instanton corrections may still be a problem if fe↵ > Mp)

• f >⇠ 7Mp needed in V = ⇤4
⇥
1+ cos

�
�
f

�⇤
. Values f ' 10�2Mp relevant for

models with sub-Planckian axion scale, but e↵ective �� > Mp

• f ⇠ 10�2Mp relevant for models with sub-Planckian axion scale,

but e↵ective �� > Mp, e.g. aligned inflation, N-flation, monodromy...

E.g., Monodromy, N-flation, Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

fe↵ � fi, gi if
f1

g1
'

f2

g2

• For exact alignment
f1

g1
=

f2

g2
, one linear combination drops out of the potential

) Can obtain fe↵ � fi , gi in the nearly aligned case.

• Can have fe↵ > Mp even if fi, gi sub-Planckian (issue 1)

(gravitational instanton corrections may still be a problem if fe↵ > Mp)

• f >⇠ 7Mp needed in V = ⇤4
⇥
1+ cos

�
�
f

�⇤
. Values f ' 10�2Mp relevant for

models with sub-Planckian axion scale, but e↵ective �� > Mp

• f ⇠ 10�2Mp relevant for models with sub-Planckian axion scale,

but e↵ective �� > Mp, e.g. aligned inflation, N-flation, monodromy...

E.g., Monodromy, N-flation, Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

fe↵ � fi, gi if
f1

g1
'

f2

g2

• For exact alignment
f1

g1
=

f2

g2
, one linear combination drops out of the potential

) Can obtain fe↵ � fi , gi in the nearly aligned case.

• Can have fe↵ > Mp even if fi, gi sub-Planckian (issue 1)

(gravitational instanton corrections may still be a problem if fe↵ > Mp)

-7.5 -5 -2.5 0 2.5 5 7.5
-10

-5

0

5

10

Aligned Natural Inflation

Kim, Nilles, MP ’05

Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

• For exact alignment
f1
g1

=
f2
g2

, one linear combination drops out of the potential

) Can obtain fe↵ � fi , gi in the nearly aligned case.

• Can have fe↵ > Mp even if fi, gi sub-Planckian (issue 1)

• Full phenomenology in MP, Unal ’15. New solutions in 1� CMB contour
(issue 2)

Notation:

• f >⇠ 7Mp needed in V = ⇤4
⇥
1+ cos

�
�
f

�⇤
. Values f ' 10�2Mp relevant for

models with sub-Planckian axion scale, but e↵ective �� > Mp

• f ⇠ 10�2Mp relevant for models with sub-Planckian axion scale,

but e↵ective �� > Mp, e.g. aligned inflation, N-flation, monodromy...

E.g., Monodromy, N-flation, Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

fe↵ � fi, gi if
f1

g1
'

f2

g2

• For exact alignment
f1

g1
=

f2

g2
, one linear combination drops out of the potential

) Can obtain fe↵ � fi , gi in the nearly aligned case.

• Can have fe↵ > Mp even if fi, gi sub-Planckian (issue 1)

(gravitational instanton corrections may still be a problem if fe↵ > Mp)

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

Notation:

r⇤ ⌘
⇤4

2

⇤4
1

ratio potential scales

rf ⌘

r
f2
f1

ratio axion scales

↵ ⌘
f1 g2 � f2 g1
f1 g2 + f2 g1

⌧ 1 alignment parameter

� ⌘ light combination $ f� = O(fi) e↵ective axion scale

 ⌘ heavy combination , f = O
⇣
fi
↵

⌘
its e↵ective axion scale

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

Notation:

r⇤ ⌘
⇤4

2

⇤4
1

ratio potential scales

rf ⌘

r
f2
f1

ratio axion scales

↵ ⌘
f1 g2 � f2 g1
f1 g2 + f2 g1

⌧ 1 alignment parameter

� ⌘ light combination $ f� = O(fi) e↵ective axion scale

 ⌘ heavy combination , f = O
⇣
fi
↵

⌘
its e↵ective axion scale

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

Notation:

r⇤ ⌘
⇤4

2

⇤4
1

ratio potential scales

rf ⌘

r
f2
f1

ratio axion scales

↵ ⌘
f1 g2 � f2 g1
f1 g2 + f2 g1

⌧ 1 alignment parameter

 ⌘ heavy combination

� ⌘ light combination

E↵ective scale : f = O(fi, gi)

E↵ective scale : f� = O
⇣
fi
↵
,
gi
↵

⌘

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

Notation:

r⇤ ⌘
⇤4

2

⇤4
1

ratio potential scales

rf ⌘

r
f2
f1

ratio axion scales

↵ ⌘
f1 g2 � f2 g1
f1 g2 + f2 g1

⌧ 1 alignment parameter

� ⌘ light combination $ f� = O(fi) e↵ective axion scale

 ⌘ heavy combination , f = O
⇣
fi
↵

⌘
its e↵ective axion scale

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

Notation:

r⇤ ⌘
⇤4

2

⇤4
1

ratio potential scales

rf ⌘

r
f2
f1

ratio axion scales

↵ ⌘
f1 g2 � f2 g1
f1 g2 + f2 g1

⌧ 1 alignment parameter

 ⌘ heavy combination

� ⌘ light combination

E↵ective scale : f = O(fi, gi)

E↵ective scale : f� = O
⇣
fi
↵
,
gi
↵

⌘

• f >⇠ 7Mp needed in V = ⇤4
⇥
1+ cos

�
�
f

�⇤
. Values f ' 10�2Mp relevant for

models with sub-Planckian axion scale, but e↵ective �� > Mp

• f ⇠ 10�2Mp relevant for models with sub-Planckian axion scale,

but e↵ective �� > Mp, e.g. aligned inflation, N-flation, monodromy...

E.g., Monodromy, N-flation, Aligned Natural Inflation

Kim, Nilles, MP ’05

V = ⇤4
1

h
1� cos

⇣
✓

f1
+

⇢

g1

⌘i
+ ⇤4

2

h
1� cos

⇣
✓

f2
+

⇢

g2

⌘i

fe↵ � fi, gi if
f1

g1
'

f2

g2

(gravitational instanton corrections may still be a problem if fe↵ > Mp)

• Admits both solutions connected to and disconnected from minima

In second case, much flatter potential at N = 60 ! Much smaller r

MP, Unal ’15

Figure 1. Contour plot of the potential as a function of the rescaled fields �̃ (horizontal direction)
and  ̃ (vertical direction). Due to the di↵erent rescaling for the 2�fields, the potential exhibits
comparable curvature in both directions. However, for |↵| ⌧ 1, the field  is significantly heavier
than �, and the evolution proceeds along trajectories where @V

@ ̃
= 0

under A ! A + 2⇡ , B ! B + 2⇡, we can divide the
n

�̃,  ̃
o

plane in an infinite number of

equivalent domains.
In Figure 1 we show one such domain, delimited by the lines A = 0, �2⇡ and B = 0, 2⇡.

The domain has the origin, with
n

�̃,  ̃
o

coordinates

O : {0, 0} , (2.13)

in one of its corners (the other three corners are three equivalent minima of the potential).
The central part of the domain is occupied by the maximum

M : ⇡

(

1

rf
+ rf ,

r3f r⇤ � rf

1 + r4f r⇤

)

. (2.14)

Finally, each of the four sides contains a saddle point, with equivalent saddle points on
opposite sides. We denote by SA and SB, respectively, the saddle point on the A = 0 and on
the B = 0 line. These points are marked in Figure 1, and they have coordinates

SA = ⇡

(

1

rf
,

r3f r⇤

1 + r4f r⇤

)

, SB = ⇡

(

rf , �
rf

1 + r4f r⇤

)

. (2.15)

Without loss of generality, we can restrict the initial conditions for the fields to be in
this domain. Moreover - again due to the symmetry properties of the potential - we can
restrict the initial conditions to be along the valley that ends on O, or (when it exists) along
a valley that starts from one of the two saddle points SA,B. Such valleys are shown in Figure
2 and are studied in Section 3. Any other valley in the potential can be mapped to one of
these valleys.
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Figure 3. Contour plot of (2.10), for parameters in the 1
r4f

< r⇤ < 1
r2f

region, together with valleys

(green) and crests (magenta). The two red curves are two distinct inflationary trajectories in this
model. They are obtained from a numerical evolution of the exact model (2.5). Both evolutions
shown contain 60 e-folds of inflation plus a brief transient moment after inflation in which the system
reaches the minimum.

The evolution shown in the figure is characterized by N = 60 e-folds of inflation along the
valley connected to SB; the following phase, from the moment the system leaves the valley
to when it first reaches the minimum, lasts for ' 2.9 e-folds. During this second stage, the
equation of state oscillates with average wave ' �0.16. This phase should be understood as
the beginning of the post-inflationary reheating.

4 {ns � r} phenomenology

In this Section we study the CMB phenomenology of Aligned Natural Inflation in the {ns � r}
plane. As discussed in the previous Section, we find two classes of inflationary trajectories in
this model: those along valleys connected to a minimum, and those along valleys disconnected
from any minimum. In the first case, inflation ends as the fields approach the minimum of
the potential; in the second case inflation terminates at the end of the valley, due to an
instability in the heavy  direction. This second class of solutions exist only for r⇤ in the


1
r4f
, 1
r2f

�

interval. 9

9To be precise, such an evolution can also take place for r⇤ slightly greater than 1
r2f

, so that evolutions

where inflation ends due to instability in the  direction are possible for 1
r4f

< r⇤ < 1
r2f

+ ✏, with ✏ small.

The reason for this is that, for r⇤ = 1
r2f

, one finds @2V2
@ 2 = 0 at the precise point where the valley connects

with the crest shown in the figure, so that the fields do not bend along the valley, but escape from it (ending
inflation), and again reach the minimum shown on the top of the figure. This behavior rapidly disappears
as r⇤ increases slightly above 1

r2f
, since @V2

@ > 0 all along the valley in this case. For the parameters used in

Figure 3, we numerically found that ✏ ' 0.004 (while 1
r2f

' 0.4444).
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Figure 4. Potential along the two valleys shown in Figure 3.

Significantly di↵erent phenomenological results are obtained in these two cases, and, for
this reason, we discuss them in two separate subsections. We anticipate that the evolutions
along valleys disconnected from minima lead to a significantly smaller value of the tensor-to-
scalar ratio r than the other trajectories, and of what is generically found in axion inflation.
The reason for this is that the potential is flatter ( ⌘ smaller ✏ parameter) closer to a saddle
point than to a minimum (see Figure 4). We stress that the valleys disconnected from the
minima are missed if one rotates the potential at the origin into a heavy  and light �
direction at the origin, and he/she then makes the approximation that all of inflation takes
place along the  = 0 line.

We performed several inflationary evolutions for the model, with di↵erent values of the
parameters, and we verified that the CMB phenomenology obtained from the 1�field e↵ective
potential (2.12) is in very good agreement with that obtained from the exact model (2.5). In
the plots shown below we have obtained the fields evolution from the exact model (2.5), and
we have then computed the values of ns and r using the slow-roll relations (B.19).

4.1 Inflation on valleys connected to minima

For definiteness, we computed the CMB phenomenology for the case in which the axion scales
are all comparable to each other, rf = 1.5 and rg = 1. We also fixed the alignment parameter
to ↵ = 1

100 , and the number of e-folds of inflation to N = 60. We then varied r⇤ to cover all
the di↵erent cases shown in Figure 2. The results of our evaluations are shown in Figure 5.
Each line shown in the Figure corresponds to a given value of r⇤ and to varying f�.

All curves have a common end on the top-right part, corresponding to large f�. Figure

4 shows the potential along a connected valley as a function of �̃ = �
f�
. As f� grows, a given

value of �̃ produces a longer inflationary expansion. Therefore, if N is fixed to 60, one needs

to decrease the value of �
f�

as f� increases. At large f�, one is probing only the part of V
⇣

�
f�

⌘

that is closest to the origin, where a quadratic approximation of the potential su�ces. One
then recovers the values of massive chaotic inflation, ns ' 0.967 and r ' 0.133.

As a comparison, the black dotted line in the figure refers to Natural Inflation [3].
All the four dashed lines in the figure sample the model in the r⇤ < 1

r4f
region. We see

that the smallest value of r⇤ shown gives results very close to Natural Inflation. This is
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Figure 6. Predictions of Aligned Natural Inflation (with inflation along a trajectory disconnected
from a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines.
The theoretical lines have been obtained for rf = 1.5, and for r⇤, from bottom to top, equal to
0.25, 0.33, 0.38, 0.41, 0.43. All the theoretical curves are done for N = 60 e-folds of inflation.
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Figure 7. Predictions of Aligned Natural Inflation (with inflation along a trajectory disconnected
from a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines. The
theoretical solid lines have been obtained for rf = 8, and for r⇤, from bottom to top, equal to
0.005, 0.009, 0.012, 0.014, 0.015. The dotted line visible in the top-left corner is the theoretical predic-
tion of Natural Inflation. All the theoretical curves are done for N = 60 e-folds of inflation.

4.2 Inflation on valleys disconnected from minima

As we mentioned, in the 1
r4f

< r⇤ < 1
r2f

interval, inflation can occur on valleys that are

connected to the saddle point SB and that are disconnected from any minimum. Inflation ends
because the heavy direction becomes unstable. The tensor-to-scalar ratio in these trajectories
is significantly smaller than the one found for the valleys connected to a minimum. This is
visible in the two Figures 6 and 7, where, respectively, the two cases rf = 1.5 and rf = 8 are
studied (such values do not have any particular importance, and they have been chosen just
as a representative case of comparable axion scales, or somewhat hierarchical axion scales).

It is possible to reproduce analytically the results shown in these two figures with good
accuracy. Most of inflation occurs close to the saddle point, where the 1�field e↵ective
potential reads

V ' V0

2

41�
 

�̂

f̂

!2
3

5 , 0  �̂  �̂0 . (4.1)
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Figure 5. Predictions of Aligned Natural Inflation (with inflation along a trajectory connected to
a minimum) in the {ns � r} plane, confronted with the 1� and 2� Planck contour lines (specifically,
we choose to plot the more conservative red contour lines of Figure 12 of [1]). We fixed rf = 1.5 and
varied r⇤ as follows: the dashed lines, from bottom to top, are for r⇤ = 0.01, 0.07, 0.1, 0.19; the solid
lines, from top to bottom, are for r⇤ = 0.3, 0.4144, 0.5, 1, 3. The lowest theoretical curve, drawn as a
dotted line, is for Natural Inflation. All the theoretical curves are done for N = 60 e-folds of inflation.

explained by the analytic computation presented in Appendix A, where we show that Aligned
Natural Inflation reproduces Natural Inflation in the limit of very small r⇤. We then see that
increasing r⇤ in this interval leads to progressively greater values of r. This is particularly
true in the left portion of the curves shown in the figure. As we mentioned above, the top-
right part of the curves is obtained at relatively large f�, while f� decreases as one moves
towards the left of the curves. As f� decreases, �̃ needs to start closer and closer to the saddle
point. Eq. (A.6) gives the analytic form of the e↵ective 1�field potential close to this point.
We see from this relation that increasing r⇤ (in the r⇤ < 1

r4f
regime that we are considering

here) indeed results in a less flat potential, and so in a greater value of r, in agreement with
the dashed curves of the figure.

The two top solid theoretical curves shown in Figure 5 sample the 1
r4f

< r⇤ < 1
r2f

regime.

We recall that in this figure we only consider inflation in the valley connected to the minimum.
We see from the top-right panel of Figure 2 that this valley becomes a crest before reaching
a saddle point. For this reason, f� cannot be taken arbitrarily small, and, as a consequence,
the corresponding curve in the {ns, r} plane only extends for a finite interval. The length of
this interval decreases as we approach the r⇤ = 1

r2f
value. This is due to the fact that also the

fraction of the stable portion of the curve from SA to the minimum decreases as r⇤ ! 1
r2f
.

Finally, the three bottom solid theoretical curves shown in Figure 5 sample the r⇤ > r2f
region. At relatively small f� (left part of the curves), the evolution starts close to the saddle
point SB. Eq. (A.8) shows that the potential becomes progressively flatter as r⇤ increases
in this regime. This explains the behavior of the three bottom solid curves in the figure. We
see that the curve corresponding to the highest value of r⇤ shown also approaches that of
Natural Inflation. This is explained by the analytic computation presented in Appendix A,
where we show that Aligned Natural Inflation reproduces Natural Inflation in the limit of
very large r⇤.

We also performed computations for other values of rf , and we obtained results quali-
tatively similar to those of Figure 5. For brevity, we do not show them here.
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ṁ⇤

◆
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ṁ⇤

◆
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, ṁ2

⇤ ⌘ g |�̇|

Produced � sources �� (later). Also, source of GW

Cook, Sorbo ’11

Senatore, Silverstein, Zaldarriaga ’11

Analogously for V (�) +
g2

2
(�� �⇤)

2 AµA
µ

For the following slide, keep in mind that quanta of �, Aµ produced

when massless, but - due to motion of � - quickly become non-relativistic.

Burst of particle production

V = V (�) +
g2

2
(�� �⇤)

2 �2

Chung, Kolb, Riotto, Tkachev ’99

Romano, Sasaki ’08

Barnaby, Huang, Kofman, Pogosyan ’09

Green, Horn, Senatore, Silverstein ’09

Lopez Nacir, Porto, Senatore, Zaldarriaga ’11

Pearce, MP, Sorbo ’16

Number. Value reached by the

inflaton during inflation

• For most of the evolution, m� ⇠ g�, g�⇤ � H , no e↵ect

• At � = �⇤, nonadiabatic m� variation

) n� (t⇤) = exp

✓
�
⇡k2

g �̇

◆
, ṁ2
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Figure 5. Scalar and tensor signals for a linear inflation potential. The solid lines show the signal
if N = 6 gauge fields are amplified. For comparison, the dashed lines show the signal when 1 gauge
field is amplified.

(iii) an analogous increase / N taking place for the power spectrum scalar perturbations,
schematically, for ⇣ / PN

i=1
~Ei · ~Bi, we have

h⇣⇣i /
X

i,j

D⇣
~Ei · ~Bi

⌘⇣
~Ej · ~Bj

⌘E
=

X

i

⌧⇣
~Ei · ~Bi

⌘2
�

= N
⌧⇣

~E1 · ~B1

⌘2
�

, (3.8)

(namely, the di↵erent sources are statistically uncorrelated, resulting in an N enhancement
with respect to the case of a single gauge field); this is contrasted by the fact that also the
second term in (3.5) increases by N . Therefore, as we can observe from (3.6), the scalar
power spectrum has a N enhancement in the ⇠ >⇠ 1 regime, when � ' 1, while a 1/N
suppression [58] in the ⇠ � 1 regime, when the second term dominates in �. Therefore, in
the ⇠ � 1 regime, the ratio between the GW and the scalar power spectra scales as N 2. It is
reasonable to expect that even mild values of N can lead to an observable GW signal, while
respecting the PBH bound.

This is confirmed by Fig. 5, where the solid (dashed) lines show the scalar and tensor
power spectra generated if N = 6 (1) gauge fields are amplified. When comparing the solid
with the dashed lines, we notice an increased GW signal at LISA scales, while the scalar
signal is now below the PBH bound at all scales. We note that, for N = 6, the source scalar
signal is indeed enhanced at the largest N shown (corresponding to ⇠ >⇠ 1), and suppressed
at the smallest N shown (corresponding to ⇠ � 1). 15 This is due in part to the transition
for the / N enhancement to the / 1/N suppression that we have just discussed, and in
part to the increased backreaction, that slows the inflaton, and decreases ⇠. We see that also
the GW spectrum is suppressed at small scales with respect to the case of single gauge field.
This suppression is just due to the increased backreaction.

4 Production from a rolling field � di↵erent from the inflaton

In this Section we provide a di↵erent example on how to obtain a large GW at interferometer
scales without conflicting with the PBH limit at N ' 10. We employ the model of [31], which
provided a localized bump in the spectrum of scalar and tensor perturbations. The model
was proposed to provide an explicit example that can generate a visible tensor-to-scalar ratio

15We fixed the the coupling f = Mp/0.48 to the same value used in the previous figure, corresponding to the
Planck limit for a linear potential and a single amplified gauge field [1]. It is possible that, for N > 1 a slightly
smaller coupling should be considered. This would require a dedicated analysis on the CMB limits, which is
beyond our scope. A slightly smaller coupling would not change our findings, and the present discussion.
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Chiral GW @ interferometers

Seto, Taruya ’07

• Can we probe GW chirality at interferometers ? Combine
two of them
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Assume |⇧| = 1. How large does

signal need to be to detect GW

and exclude ⇧ = 0 at 2� ?

⌦ = ⌦↵

⇣
f
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5

Detector Network p ⇠ (sensitivity) ⇠ (exclude ⇧ = 0)

2nd Gen H1-L1-V1-K1 1 2.3 2.8

2nd Gen H1-L1-V1-K1 2 2.2 2.6

3rd Gen 1 1.8 2.0

3rd Gen 2 1.9 2.0

TABLE I. Column 3 shows the 2� sensitivity to ⇠ for di↵erent
future GW networks (column 1) in the axion-based inflation
model discussed in the text, for two power-law inflaton po-
tentials: p = 1 or p = 2 (column 2). Column 4 indicates the
value of ⇠ needed in order for the respective detector network
to detect parity violation (reject ⇧ = 0) at 2�.

holes [47]. The bounds from the first two e↵ects [46] are
weaker than those from the SGWB sensitivity. Those
from the primordial black holes are potentially stronger,
but they carry an uncertainty associated with how many
scalar perturbations are produced at such small scales,
and in how many black holes they create [47]. No such
uncertainties are present for the SGWB signal that we
have studied here. Order one values of ⇠ correspond to
f/C = O

�
10�2

�
Mp, where Mp is the reduced Planck

mass; interestingly, this is a typical value for the axion de-
cay constant in many realizations of axion inflation [45].

Conclusions.—We introduced a new formalism for
measuring polarization asymmetry in the SGWB, and
we applied it to the recent LIGO data to produce the
first constraints on the parity violation in the SGWB. We
also estimated the sensitivities of future GW detectors to
the parity violating SGWB signals in the framework of
generic power-law SGWB spectrum and in the specific
example of an axion-based inflation model. Since astro-
physical SGWB sources are expected to be unpolarized,
this technique may provide a way to identify the cosmo-
logical contributions to the SGWB spectrum.
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