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Ooguri, Vafa 2005

Concretely: How good can approximate 
symmetries be? 

Can an approx. global symmetry be “too good 
to be true” and put a theory in the swampland?



Approximate Symmetries
For large-field, natural inflation we might like to have a good 
approximate shift symmetry

� ! �+ f, f > MPl

In effective field theory, nothing is wrong with this. In 
quantum gravity, it is dangerous. Quantum gravity theories 
have no continuous global symmetries.

(see Banks, Seiberg 1011.5120 and references therein)

Basic reason: throw charged stuff into a black hole. 
No hair, so it continues to evaporate down to the 
smallest sizes we trust GR for. True of arbitrarily large 
charge ⇒ violate entropy bounds.



The Power of Shift Symmetries

Scalar fields with good approximate shift symmetries 
can play a role in: 

• driving expansion of the universe (now or in the past) 
• solving the strong CP problem 
• making up the dark matter 
• breaking supersymmetry 
• solving cosmological gravitino problems 

These are serious, real-world phenomenological 
questions!



Example: QCD Axion
Weinberg/Wilczek/…. taught us to promote theta to field:
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Important point: large field range, small spurion
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di Cortona et al. 1511.02867



Example: QCD Axion
• Stellar cooling constraints: fa >~ 109 GeV 

• This means the quartic coupling <~ 10-41. Any axion is very 
weakly coupled! 

• Whole potential has an overall exponentially small spurion 
e-S in front; relative terms fa suppressed. 

• Upper bound on fa? Black hole super-radiance (Arvanitaki et 
al.) rules out a window near the Planck scale 

• Weak Gravity Conjecture: fa <~ MPl/S. Links how 
exponentially small the spurion is with relative suppression 
between terms.



What is the Weak Gravity 
Conjecture?



The Weak Gravity 
Conjecture

In 2006, Arkani-Hamed, Motl, Nicolis, and Vafa 
(AMNV) conjectured that in any consistent 
gravitational theory with a U(1) gauge field—like 
electromagnetism—there is at least one particle 
with

m 
p
2eQMPl

This is the opposite of the black hole extremality bound.  
 
For such particles, gravity is weaker than E&M.



Arkani-Hamed, Motl, 
Nicolis, Vafa (“AMNV”) 
hep-th/0601001 

Particle exists with 
M<Q (superextremal).

What is the Conjecture?

M = Q

M > Q

M < Q

Figure 2. An extremal black hole can decay only if there exist particles

whose charge exceeds their mass.

The difficulties involving remnants are avoided if macroscopic black holes can evaporate

all their charge away, and so these states would not be stable. Since extremal black holes

have M = QMPl, in order for them to be able to decay into elementary particles, these

particles should have m < qMPl. Our conjecture also naturally follows from Gell-Mann’s

totalitarian principle (“everything that is not forbidden is compulsory”) because there should

not exist a large number of exactly stable objects (extremal black holes) whose stability is

not protected by any symmetries.

Another heuristic argument leading to same limit on Λ is the following. Consider the

minimally charged monopole solution in the theory. With a cutoff Λ, its mass is of order

Mmon ∼ Λ/g2 and its size is of order Rmon ∼ 1/Λ. It would be surprising for the minimally

charged monopole to already be a black hole because the values of all charges carried by

a black hole should be macroscopic (and effectively continuous); after all, a black hole is a

classical concept. Demanding that this monopole is not black yields

Mmon

M2
PlRmon

<∼ 1 ⇒ Λ <∼ gMPl (5)

2.3 Simple parametric checks

It is easy to check the conjecture in a few familiar examples. For U(1)’s coming from closed

heterotic strings compactified to four dimensions, for instance, we have

gMPl ∼ Ms , (6)

6

Why? Postulate that extremal black holes should decay.  

Why? Else: nearly-extremal black holes spontaneously 
evolve toward extremality. Sequester information and 
entropy forever. Seems strange.



Convex Hull Condition

Axion Inflation
The Weak Gravity Conjecture

WGC Constraints on Axion Inflation
Loopholes

Conclusions and Directions for Future Research

The N-Species (Mild) Weak Gravity Conjecture

Suppose we have not 1, but N 1-form gauge fields.
The N-species weak gravity conjecture holds that the
convex hull of the charge-to-mass vectors ±~zi = ± ~qi

mi
Mp

must contain the N-dimensional unit ball.

Figure 6 : The convex hull condition [Cheung, Remmen ’14].

Tom Rudelius October 21, 2015

Multiple U(1) gauge groups: black hole extremality 
bound generically becomes 

Stricter WGC than 
each U(1) individually! 
Cheung, Remmen 
1402.2287

CHC: convex hull 
contains the unit 
ball

MBH >
p

(e1Q1)2 + (e2Q2)2 + . . .+ (eNQN )2MPl

~z =
�!
eQ/m



Super-Planckian Axions?
Axion fields in string theory are generally found to have 
f < MPl. (Banks, Dine, Fox, Gorbatov hep-th/0303252) 
So can’t immediately use one for large-field inflation. 
People have tried clever model-building to improve:

Axion Inflation
The Weak Gravity Conjecture

WGC Constraints on Axion Inflation
Loopholes

Conclusions

Three Popular Solutions:

Figure 1 : N-flation
[Dimopoulos et al.
’05]

Figure 2 : Decay
Constant Alignment
[Kim, Nilles, Peloso
’04]

ø

V!ø"

Figure 3 : Axion
Monodromy
[McAllister et al. ’08,
Silverstein,
Westphal ’08,
Flauger et al. ’09]
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N-flation 
(Dimopoulos, Kachru, 

McGreevy, Wacker ’05)

Alignment 
(Kim, Nilles, Peloso ’04)

Monodromy 
(Silverstein, Westphal ’08; 

McAllister, Flauger, ….)

a =

I
AydyWGC provides a handle in the case 



Inflation vs. WGC: Magnetic
AMNV pointed out that magnetic monopoles have a Weak 
Gravity bound that looks like

mmag < (qmag/e)MPl

If we interpret the classical monopole radius 
Z

rcl

1

e2
~B2 = mmag

as a cutoff length scale for EFT, we have
⇤ = r�1

cl < eMPl
(also follows from Lattice WGC 

because tower of states)

If our 5D radius should be bigger than this cutoff, we have
R > rcl >

1

eMPl

implying again that f < MPl

(de la Fuente, Saraswat, Sundrum 1412.3457)

Also see electric arguments: AMNV; Rudelius; Brown, Cottrell, Shiu, Soler



Inflation vs WGC: Multi-Field
WGC, then, tells us decay constants are less than the 
Planck scale. But N-flation, alignment, and monodromy 
are explicitly trying to get super-Planckian field range out 
of sub-Planckian decay constants. Does WGC help here?

Start with N-flation. N axions from N U(1) gauge groups. 
Try to move along diagonal to get 

3.1 Warmup: diagonal N-flation

Suppose that we have N U(1) gauge fields Ai with couplings ei and that the kinetic mixing
among them is negligible. We will also assume that in this basis the charge lattice simply
consists of integer electric or magnetic charges under each U(1). These are strong simplifying
assumptions, but provide a useful starting point. The Weak Gravity Conjecture applied to each
gauge field separately implies the existence of electrically and magnetically charged particles
satisfying certain bounds. But the constraint for the set of N fields is actually stronger than for
any individual field: if we marginally saturate the bound for each U(1) by postulating a magnetic
monopole with charge qm = 1 and mass

√
2MPl/ei, for example, then a nearly-extremal black

hole with large and equal charges under every U(1) will not be able to decay. This is because
the extremality bound for a black hole charged under multiple groups depends not on the sum
of the charges but on the charges added in quadrature: for a magnetically charged black hole
in four dimensions, the bound is Qeff ≡

√

Q2
1/e

2
1 + . . .+Q2

N/e
2
N < MBH/(

√
2MPl).

Consider extranatural N-flation that moves along the diagonal in each axion direction,
attempting to obtain an effective decay constant

f 2
eff = f 2

1 + f 2
2 + . . .+ f 2

N =

(

1

2πR

)2( 1

e21
+ . . .+

1

e2N

)

. (12)

Notice that this is the appropriate expression under the assumption of no kinetic mixing and
the further assumption that the dominant instanton effects give rise to a potential of the form
∑

ci cos(ai/fi), as would be generated for example from wrapped worldlines of electrically
charged particles of charge 1 under each gauge group. More general instantons can lead to
alignment phenomena in which inflation winds around one direction in axion space multiple
times. We will return to such a possibility later.

The linear combination of 1/e2i factors appearing on the right-hand side of (12) is precisely
what appears in the extremality bound for a magnetically charged black hole with equal charge
Q under all N gauge groups. Let us build some intuition by considering ways that such a
diagonally magnetically charged black hole could decay:

• It could emit a monopole of diagonal charge (q, q, . . . q), so that its charge-to-mass vector
points in the same direction after the emission but is now shorter (we take Q > q > 0).
In this case, the problem essentially reduces to the one-field case. The self-energy of
the monopole imposes mmon

>
∼ q2

∑

i
1
e2
i

Λ, while the condition that the black hole moves

away from extremality imposes that m2
mon

<
∼ q2

∑

i
1
e2
i

M2
Pl. These conditions together with

2πRΛ >
∼ 1 require that feff <

∼ MPl/q.

• It could emit a monopole charged under a single gauge group. Suppose it emits a particle
with massm1 and charges (q1, 0, . . . , 0). The self-energy constraint leads to m1

>
∼ q21Λ/e

2
1.

If the diagonally-charged black hole emits this particle, its effective charge decreases only
by (expanding the square root) −∆Qeff ≈ Qq1/(e21Qeff) = (q1/e1)(f1/feff). As a result,
the condition that the monopole can be emitted is no longer m1 <

√
2q1/e1MPl but the

stronger condition m1 <
√
2q1/e1(f1/feff)MPl. This leads to feff <

∼ MPl/q1.

10

Magnetically charged black holes obey

Qe↵ ⌘

s
Q2

1

e21
+

Q2
2

e22
+ . . .+

Q2
N

e2N
< MBH/MPl
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Magnetically charged black holes obey
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Key fact: the same quadratic form 
appears in the kinetic term of the 

axion (hence feff) and in the 
extremality bound of the black hole!

With a little work, derive that the 
magnetic WGC excludes this kind of 

simple N-flation.



An Alignment Model
If magnetic and electric charges are not simultaneously 
simple, can evade WGC.  

de la Fuente, Saraswat, Sundrum:

•two axions, A and B, from 
5D gauge fields 

•no kinetic mixing 
•electrically charged 
particles (1,0) and (N,1) 

•assume fA < MPl, fB < MPl

θA

θB

|
2π

|
−2π

− 2π

− 4π

− 6π

− 8π

−10π

◦

◦

×

×

θA

θB

|
2π

−2π

Figure 1: Two views of the fundamental domain (shaded) of the two axions for the case N = 5, together
with a trajectory (thick blue arrow) beginning at a maximum of the potential and ending at the origin.
For clarity, the view on the left and right are not drawn to the same scale. The right hand view is a
“natural” parametrization with 0 ≤ θA,B ≤ 2π but requires that we discontinuously change the value of
θ and execute a corresponding monodromy on the Kaluza–Klein spectrum when wrapping around the
torus. The left-hand view chooses a parametrization in which the values of θA,B and the Kaluza-Klein
masses change smoothly during all of inflation. To illustrate the periodic identifications imposed on the
boundaries, we show two points labeled with a red ◦ that are identified and two points labeled with a
purple × that are identified.

5.2 Case 1: dominant instantons satisfy electric WGC

The first case we consider is that the same charges (1, 0) and (N, 1) that control the axion
potential also are responsible for satisfying the electric WGC. The argument of [40], emphasized
to us by the authors [56], is that once the magnetic WGC constraint that fA, fB <

∼ MPl is
imposed, there is no further WGC constraint. The charged particles can be arbitrarily light, and
direct calculation confirms that higher instanton contributions are numerically small. However,
this changes if we impose our stronger XWGC conjecture from section 4.4. The potential has a
local maximum where the arguments of both cosines are π, i.e. NθA + θB ≈ π and θA ≈ π. At
this point, the lightest KK modes for both charged particles have mass 1/(2R) (assuming that
m5 = 0). Thus the XWGC tells us that, assuming we started with the best-case scenario where
the charged particles have negligible 5d masses, the charge-to-mass vectors at the maximum of

21

i.e. implicitly assumes magnetic WGC with (1,0) and (0,1)



Monopoles and Cutoffs
This example satisfies minimal versions of WGC. But it has 
strange features. The electrically charged particle of charge 
(N,1) and the magnetic monopole of charge (1,0) have a 
nonminimal Dirac quantization—especially at large N.

Is the classical monopole 
radius really the right cutoff?

~L =

Z
d3~r ~r ⇥ ~E ⇥ ~B ⇠ N

Charged particle wavefunction 
probes length scales shorter by N.



KK Modes and Cutoffs
The shift symmetry of the axion is satisfied in the presence 
of KK modes by a monodromy in the spectrum.can have important dynamical consequences when θ is large. At first glance, such a mass

term constitutes a hard breaking of the shift symmetry for θ—even of the gauged θ → θ + 2π
symmetry! The resolution of this puzzle is that there is a monodromy in the Kaluza–Klein
spectrum. Using the Kaluza-Klein decomposition Ψ(x, y) =

∑

∞

n=−∞
exp(iny/R)ψn(x)/

√
2πR,

this action leads to a 4d effective theory

Leff =
∞
∑

n=−∞

⎛

⎝iψ̄nγ
µDµψn +m5ψ̄nψn + i

n− qθ
2π

R
ψ̄nγ

5ψn +
c

Λ

∣

∣

∣

∣

∣

n− qθ
2π

R

∣

∣

∣

∣

∣

2

ψ̄nψn + . . .

⎞

⎠ . (32)

If we were to truncate this theory to a few low-lying modes, we would find a violation of the
shift symmetry θ → θ + 2π. But this symmetry is a large gauge transformation in the higher-
dimensional UV completion, so it cannot be violated. Writing the EFT for all Kaluza–Klein
modes makes the answer manifest. There is a monodromy effect that rearranges the spectrum;
when θ → θ + 2π, the mode with label n acquires the same mass spectrum that the mode with
label n − q previously had. Because the derivative ∂5 and the contribution of A5 are always
packaged together in a covariant derivative, this will be true of arbitrary higher-dimension
operators as well.

Recall that for a Dirac fermion with mass term mψ̄ψ + iµψ̄γ5ψ, the physical mass is
√

m2 + µ2. In particular, all 4d fields have mass larger than the 5d mass m5.

4.2 Consistency of a single EFT across axion moduli space

We have seen that the 5d theory compactified on a circle with a Wilson loop θ =
∮

A5dx5

turned on has a spectrum that depends nontrivially on the value of θ. Let us ask what happens
when we move a large distance in moduli space. Tracking a single KK mode adiabatically as θ
varies, we find that its CP-odd mass is shifted by

∆m =
q∆θ

2πR
(33)

In particular, if ∆θ >
∼ 2πRΛ/q, then a KK mode which is initially light acquires a large mass of

order the cutoff Λ, and exits the effective theory. In fact, when we move this far in moduli space,
the entire KK spectrum is shifted, so that the modes which were initially light are heavy, and
modes initially above the cutoff are light. Since our description of the five-dimensional theory
breaks down at Λ (and in particular 5d locality may not hold above this scale), it is possible that
in the process new physics can emerge from the cutoff and become light, ruining our effective
description. Thus, if we wish to retain control of the KK spectrum, we should impose:

q∆θ <
∼ 2πRΛ. (34)

We emphasize that this is not a statement about the 4d effective theory cut off at the compact-
ification scale, which obviously does not include Kaluza–Klein modes that may be important
elsewhere in the moduli space. It is a statement about the 4d theory including a tower of weakly

15

5D coupling

This excludes any kinetic alignment model with a single dominant large eigenvalue, again under
the assumption that the instanton effects are controlled by minimal electric charges in the same
basis for which the magnetic monopoles satisfying the WGC have minimal charge. A parametric
violation of this assumption, such as instanton effects that are highly aligned, can evade our
arguments. We will discuss such a case in section 5. The assumption of single-eigenvalue
dominance, on the other hand, is made only for simplicity. It is straightforward to check in
the two-axion case that the bound holds for completely arbitrary eigenvalues. Furthermore,
simple numerical studies in which the kinetic matrix is chosen from a Wishart distribution,
Kij ∼ WN (σ2, N), reveal that indeed the radius of moduli space decreases with increasing N .

4 New conjectures on EFT over the moduli space

4.1 Exploring the moduli space: masses and Kaluza–Klein reduction

In this section we develop a new tool for constraining large-field axion models arising from ex-
tra dimensions, which opens an opportunity to obtain powerful constraints on models of axion
monodromy. This approach relies, in part, on the nontrivial manner in which shift symmetries
are realized in the effective theory. The potential energy in extranatural inflation (including
string axion models) is a sum of cosine terms from instantons of various winding numbers, re-
specting an exact discrete shift symmetry. However, other terms in the effective theory preserve
the shift symmetry in a less transparent way. Consider the case of a 4d axion obtained by
dimensional reduction of a 5d 1-form gauge field, and suppose that in five dimensions there is
a fermion Ψ with charge q under the gauge field. (The case of a charged scalar field is similar.)
Its action is

∫

d5x
√
−g
(

iΨ̄ΓMDMΨ+m5Ψ̄Ψ+
c

Λ
DMΨ̄DMΨ+ . . .

)

, (30)

where DM = ∂M−iqAM , Λ is the UV cutoff of the theory, and the dots represent various higher-
dimension operators. The five Dirac matrices ΓM correspond to the usual 4d Dirac matrices
together with −iγ5. We emphasize that Λ is the scale at which the local, 5d abelian gauge
theory breaks down. In particular, we have no guarantee of five-dimensional locality holding at
distances shorter than Λ−1.

We study this theory on a background of R3,1×S1 with the fifth dimension having a periodic
identification y ∼ y + 2πR with a background gauge field A5 = θ

2πR . Although fixing A5 to
be constant is a gauge choice, there is a gauge-invariant Wilson loop determined by θ which is
well-defined modulo 2π. The compactified theory contains a term

∫

d5x
√
−g

qθ

2πR
Ψ̄Γ5Ψ, (31)

that we may think of as an effective mass (albeit one that depends on the spontaneous breaking
of 5d Lorentz symmetry) which potentially decouples Ψ from the effective theory if θ is large
enough. This 5d term gives rise to a (CP-odd) mass term ∝ iθψ̄γ5ψ in the 4d theory, which

14In the presence of large charges, modes that are light in one 
part of the inflaton’s trajectory can be above the cutoff in 
other places, unless we invoke the stronger constraint

R > Nrcl rather than R > rcl

leads to 4D KK theory

That implies                   . fe↵ < MPl



Lesson
The case that is hardest to exclude with the Weak 
Gravity Conjecture is one that involves venturing far 
enough out in moduli space that modes can 
descend from the cutoff to become light. 

Is this a problem? Seems to be no clear consensus 
on this question. 

I think that charge/monopole scattering has the 
potential to provide a sharp argument that it is.



These applications of the WGC assume that just a few 
particles satisfy the Convex Hull Condition. Is that safe? 

What is the Weak Gravity Conjecture really? 
Some particle has: 

But what is a “particle”? Would a black hole count?

m 
p
2eQMPl



Black hole extremality, corrected

Kats, Motl, Padi ’06: black holes obey WGC if



Black hole extremality, corrected

With the opposite inequality, would need light charged 
particles (not black holes) for WGC to be true



Black hole superextremality 
from unitarity
MR, G. Remmen, T. Roxlo, T. Rudelius, to appear

Argument along the lines of Adams, Arkani-Hamed, 
Dubovsky, Nicolis, Rattazzi hep-th/0602178

Prove positivity of 
coefficient in low-energy 
amplitude using 
dispersion relation to 
relate to integral over 
branch cut, related to 
total cross section I M(s, t ! 0)

s3
ds to extract s2 coeff.



Black hole superextremality 
from unitarity

Subtleties:               from graviton in t-channel makes 
forward limit divergent. Subleading terms tricky too, e.g.:

�Gs2/t

qµq⌫/q2Four-derivative contributions contain               ; amplitude is 
not really a function of momenta but depends on how forward 
limit is taken. Naive arguments can prove false things like 
negativity of Gauss-Bonnet terms (Bellazzini, Cheung, 
Remmen).

MR, G. Remmen, T. Roxlo, T. Rudelius, to appear



Unitarity Bounds on Photon/Graviton Scattering

Solution: don’t scatter momentum eigenstates. In D > 4 
dimensions, scatter wavepackets smeared over angles 
that soften the singularities. 

Most general bounds scatter superpositions of photons 
and gravitons. E.g. D = 5: scatter two particles of form

Both photon polarizations

Graviton polarizations 
(transverse coords) 

Corrected extremality bound allows 
black holes to obey WGC!

Conclude:

MR, G. Remmen, T. Roxlo, T. Rudelius, to appear

Preliminary result!Work in progress 

Preliminary results interesting, but 
I’ll hide the details because we still 
have some confusions. 

Hope: conclude that unitarity 
means black holes are 
superextremal



On the one hand, this means that the most mild form of 
the WGC—where we don’t specify if the charged 
objects are particles or black holes—follows from 
unitarity (up to plausible assumptions and fine print about analytic properties in theories with gravity) 

On the other, if tiny corrections to extremal black holes 
lead to WGC, it seems kind of uninspiring. We were 
hoping for particles, things light enough to matter in 
effective field theory. 

Do we give up? No. Some internal consistency 
arguments plus many examples in string theory make 
us think that the right version of the Weak Gravity 
Conjecture is much stronger than what AMNV 
proposed.



Lattice Weak Gravity 
Conjecture: A (Tentative) Guess

For any set of charges allowed by Dirac quantization, 
there exists a particle with those charges that has

m <
��� ~Q

���MPl

where the precise meaning of        can be read off from the 
black hole solutions. 

��� ~Q
���

Infinitely many states satisfy a bound; some are particles, 
some are black holes (interpolate between).



The LWGC predicts that in weakly coupled theories 
there is an infinite tower of states that becomes light 
as the coupling goes to zero. 

Applies to nonabelian gauge theories as well as U(1). 

Very weakly coupled theories must have a very low 
cutoff.

Tower at          . 
Strong gravity at                       . 

Consistent with behavior of Kaluza-Klein towers, string 
towers, etc.

eMPl

⇤⇤ < e1/3MPl



Is this too good to be true? Checks out in many examples:



Lattice is Slightly Too Strong
Consider a toroidal compactification on T3 with coordinates 
x, y, z. Quotient by freely acting Z/2 x Z/2 group:

Leaves unbroken KK 
U(1)s in y, z directions

First Z/2 guarantees nx + ny is an even number. 
Second Z/2 removes U(1) in x direction. 

Result: sites of lattice with odd ny have no superextremal 
states (extra contribution to mass from nx but no charge).



Modular invariance implies, for closed string U(1)s in 
perturbative string theories, that least a sublattice of 
states obey WGC. (Also Montero, Shiu, Soler on AdS3/
CFT2.) 

In practice, it seems that the fraction of lattice sites that 
fail WGC is never large. 

We are building up a large collection of examples. 

Next step: what does this imply for inflation? Older 
arguments need to be revisited.



Conclusions
AMNV’s conjecture has implications for inflation and 
other real-world physics. 

We have noticed that in every example we understand 
an infinitely stronger statement is true. 
 
We are trying to find the right statement consistent 
with all the examples, strong enough but not too 
strong. 
 
Implications for mathematics, cosmology, and particle 
physics. Many concrete, tractable paths for further 
progress.


