Partially Acoustic Dark Matter,Interacting Dark Radiation,& Large Scale Structure

Yuhsin Tsai University of Maryland

in collaboration with

Zackaria Chacko, Yanou Cui, Sungwoo Hong, and Takemichi Okui

KICP Seminar, Oct 14 2016

Explaining (σ_8, H_0) Discrepancies using Non-Minimal Dark Sector

Yuhsin Tsai University of Maryland

in collaboration with

Zackaria Chacko, Yanou Cui, Sungwoo Hong, and Takemichi Okui

KICP Seminar, Oct 14 2016

Non-minimal Dark Sector and LSS

I'll focus on the solution of LSS ``puzzles" through DM-DR scattering

Z. Chacko, Y. Cui, S. Hong, T. Okui, YT (2016)

M. Buen-Abad, G. Marques-Tavares, and M. Schmaltz (2015)

J. Lesgourgues, G. Marques-Tavares, and M. Schmaltz (2015)

P. Ko and Y. Tang (2016)

Other proposal

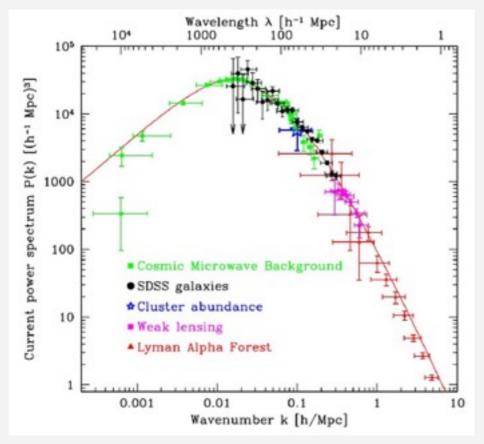
Decaying DM, Massive neutrinos, Dark energy models, ...

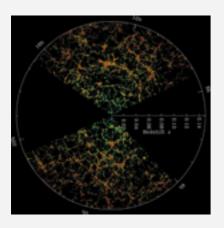


Matter Power Spectrum

Three ways to measure the spectrum

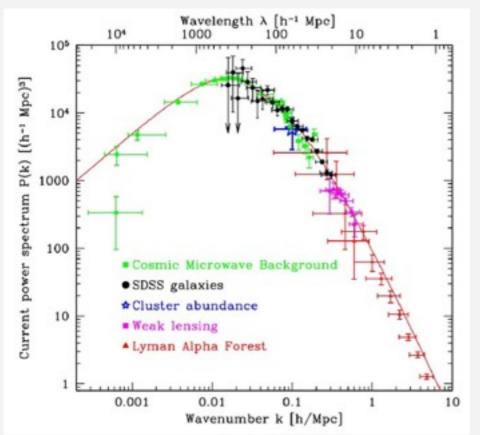
2004





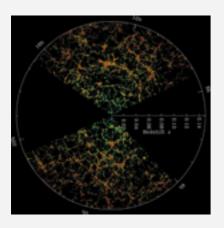
Matter Power Spectrum

2004



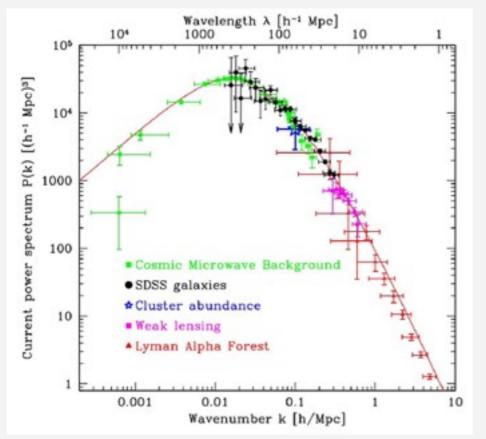
Three ways to measure the spectrum

Assuming a DM model (Λ CDM), fix the parameters using CMB, predict the power spectrum today



Matter Power Spectrum

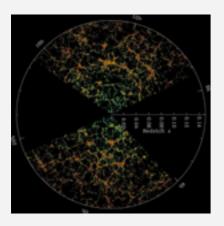
2004



Three ways to measure the spectrum

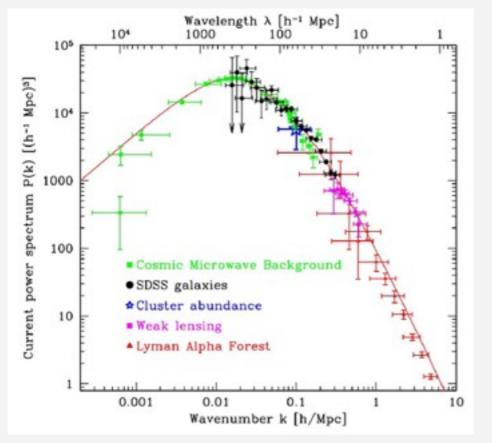
Assuming a DM model (Λ CDM), fix the parameters using CMB, predict the power spectrum today

Map the galaxy distribution, then fit the DM distribution



Matter Power Spectrum

2004



Three ways to measure the spectrum

Assuming a DM model (Λ CDM), fix the parameters using CMB, predict the power spectrum today

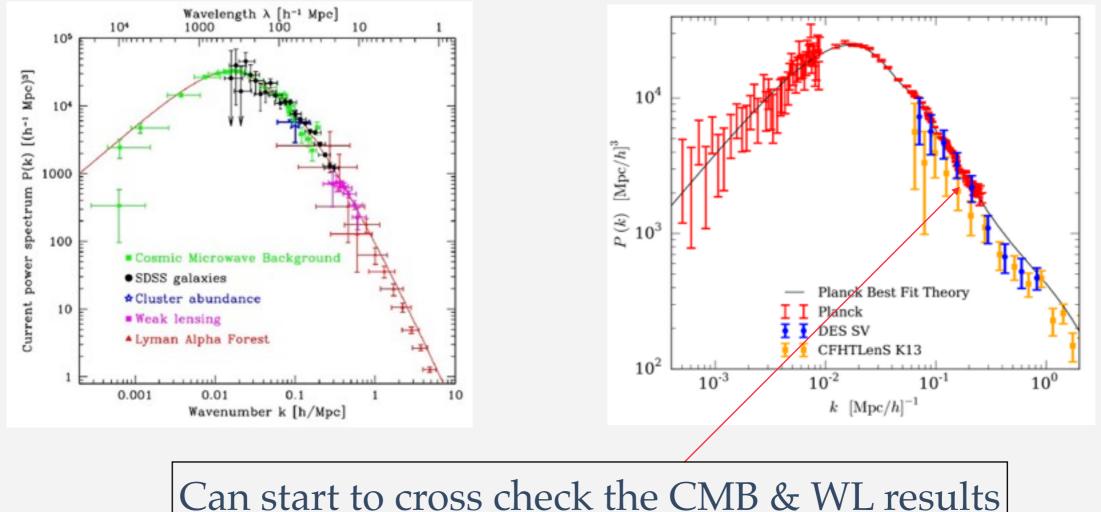
Map the galaxy distribution, then fit the DM distribution

Map the DM distribution directly using weak lensing experiments

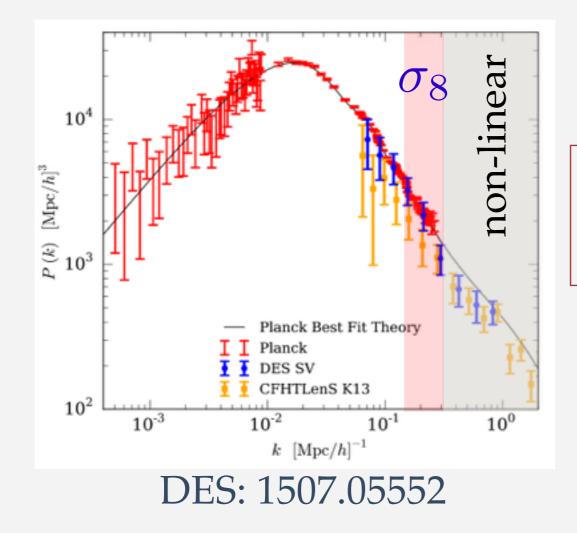


Matter Power Spectrum

2004



The Sigma8 problem

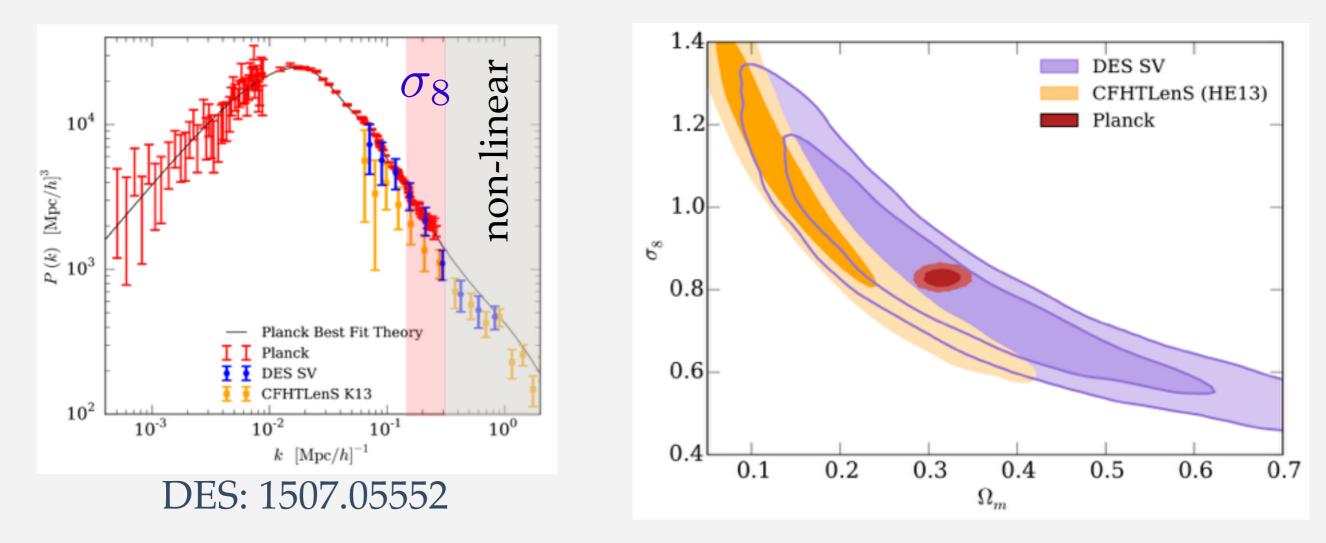


~ amplitude of matter fluctuation on the scale of $8 h^{-1}$ Mpc.

The smallest structure to study without significant non-linearity effects

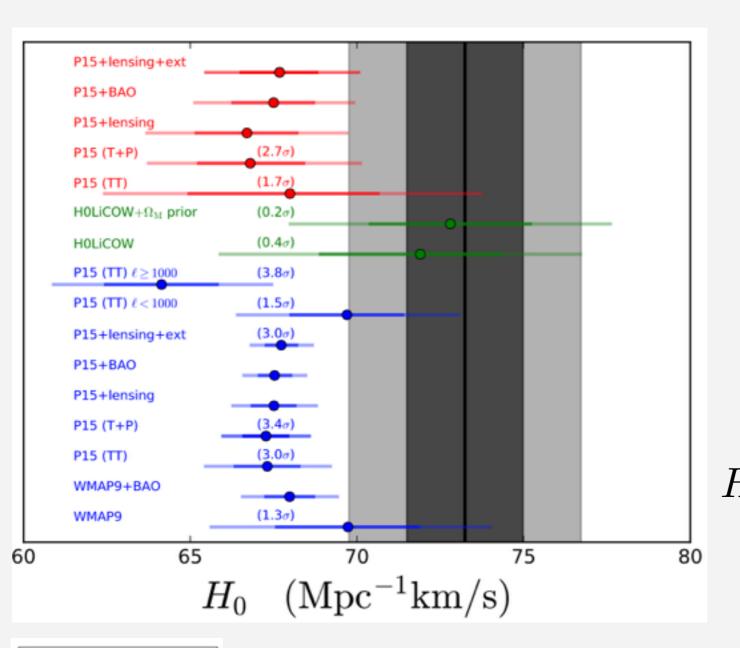
The Sigma8 problem

Two σ_8 measurements: CMB + Λ CDM vs. Weak Lensing



The CFHTLenS & CMB results deviate by ~ $2 - 3\sigma$.

Ho problem



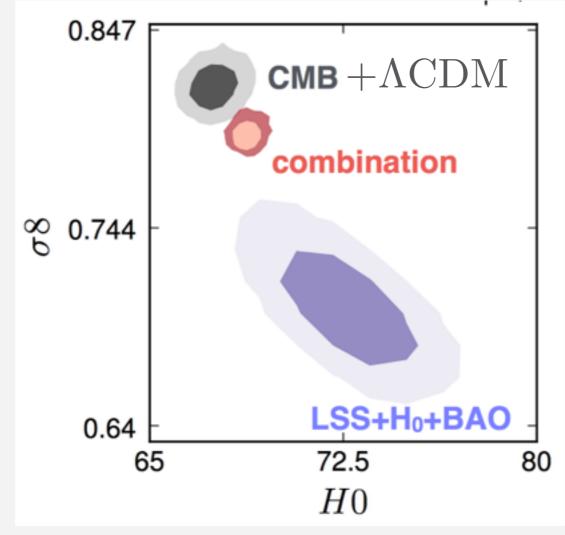
Two H₀ measurements $CMB + \Lambda CDM$. VS. Local Measurements $H_0^{\text{Planck}} = 67.3 \pm 0.7 \,\mathrm{km s^{-1} Mpc^{-1}}$ $H_0^{\rm HST} = 73.02 \pm 1.79 \,\rm km s^{-1} Mpc^{-1}$ $> 3\sigma$ Discrepancy

CMB ΛCDM+N_{eff}
 H0LiCOW
 CMB ΛCDM
 R16

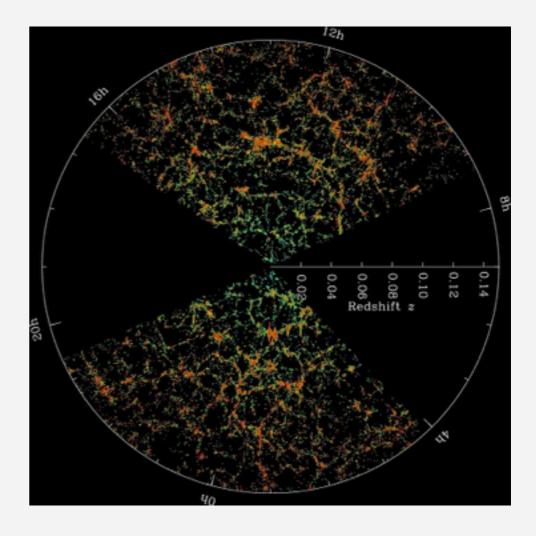
Bernal et. al. 1607.05617

Large Scale Structure problem

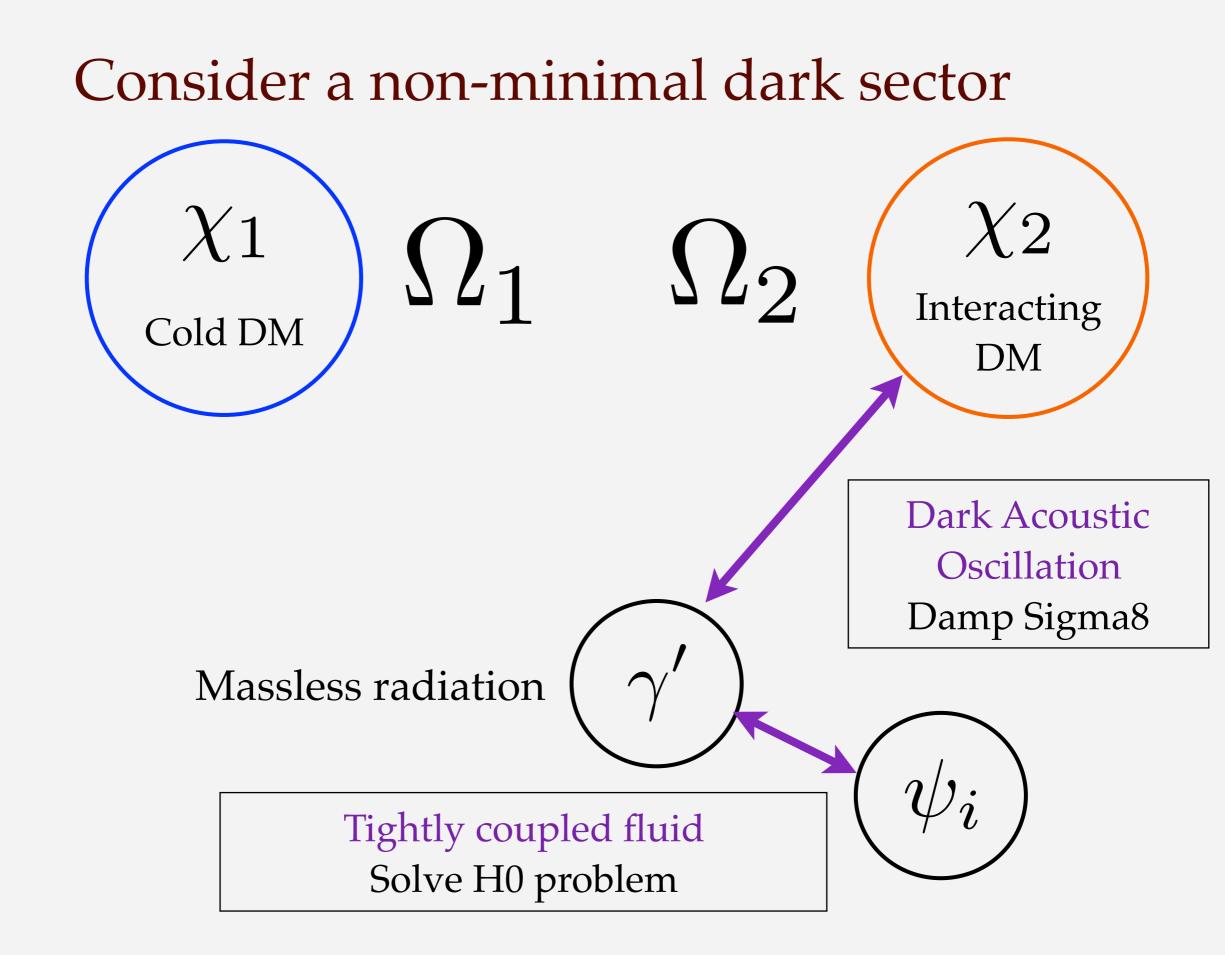
Poulin et. al. 1606.02073 : an illustration

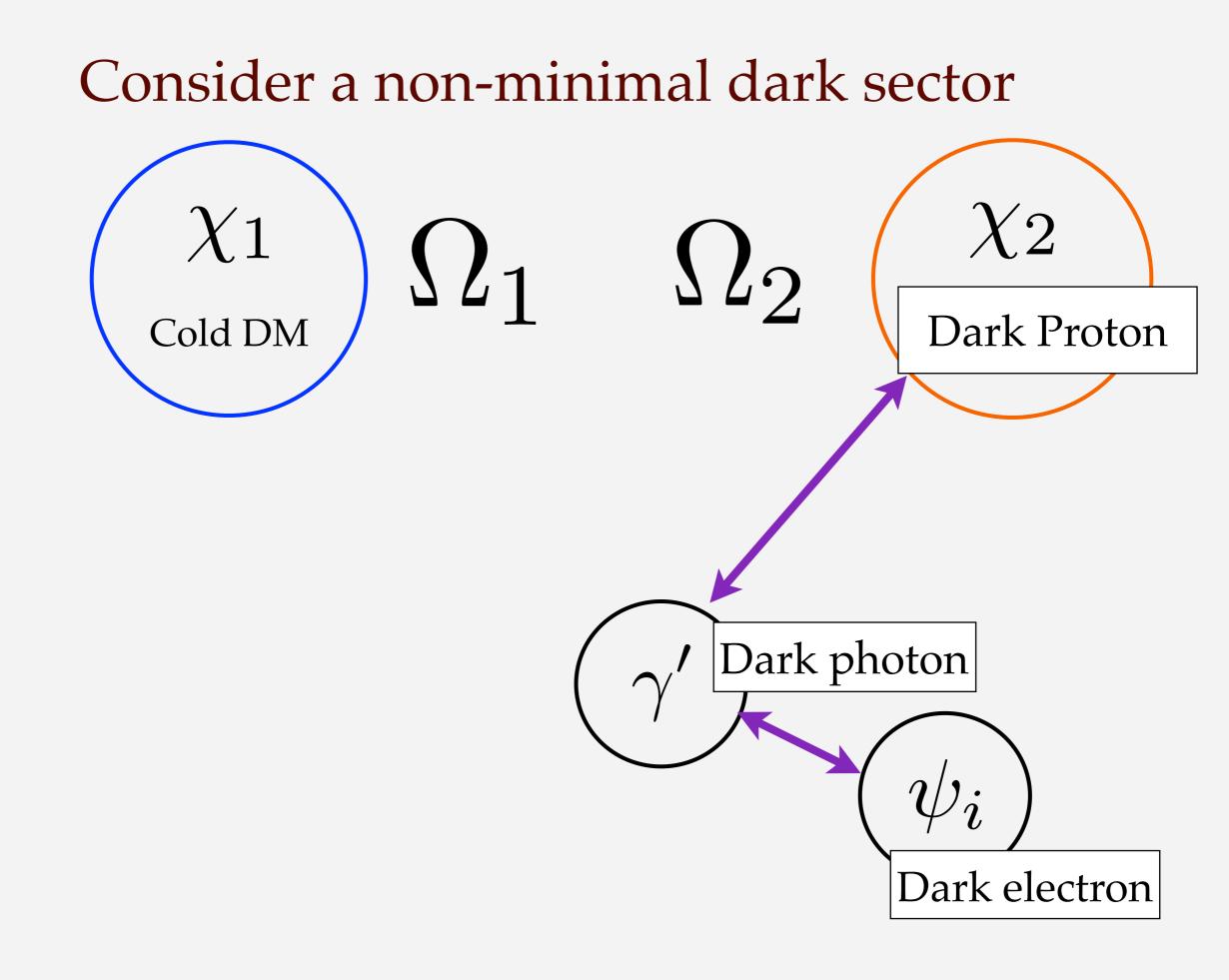


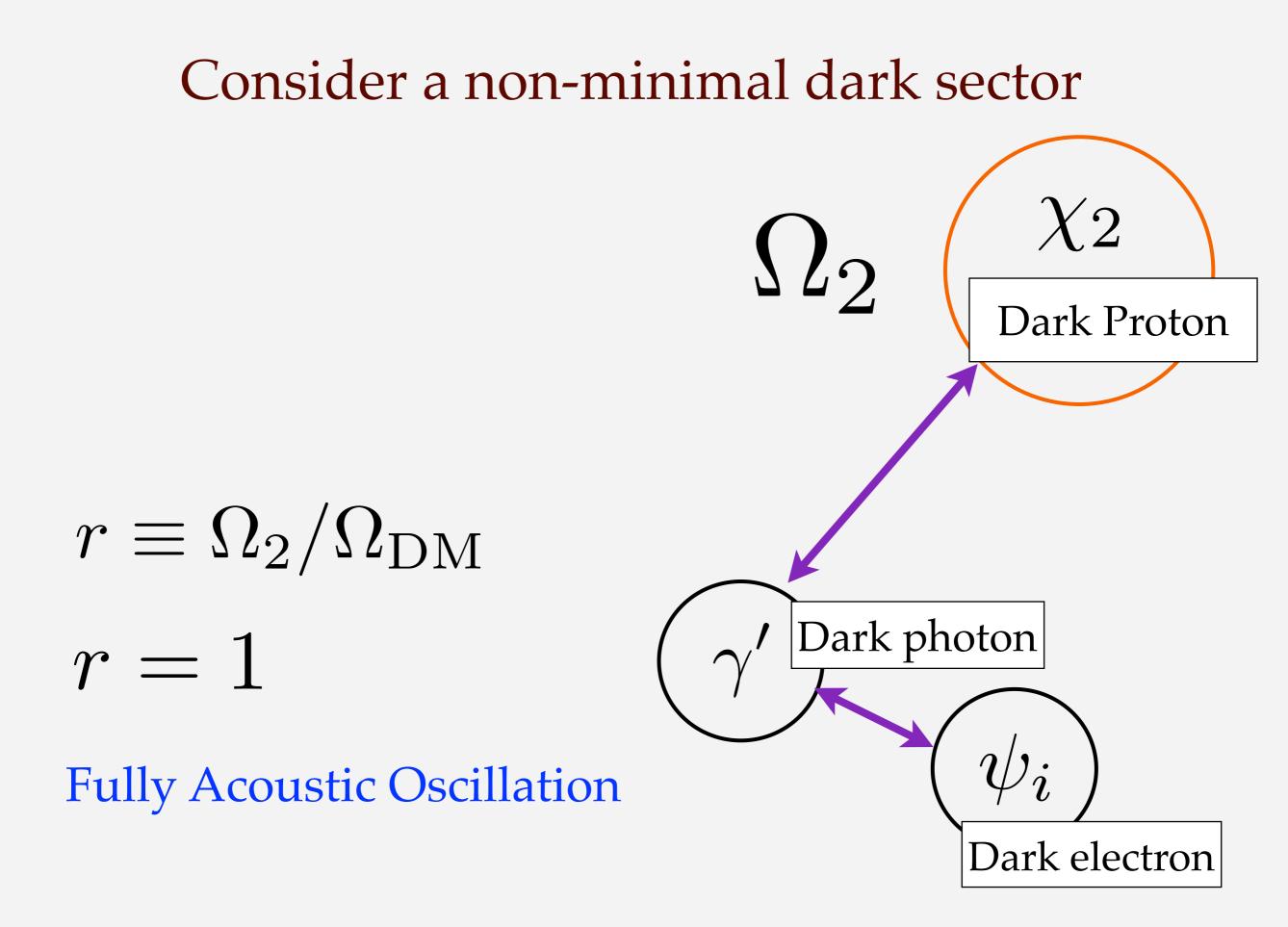
One solution: Partially Acoustic DM

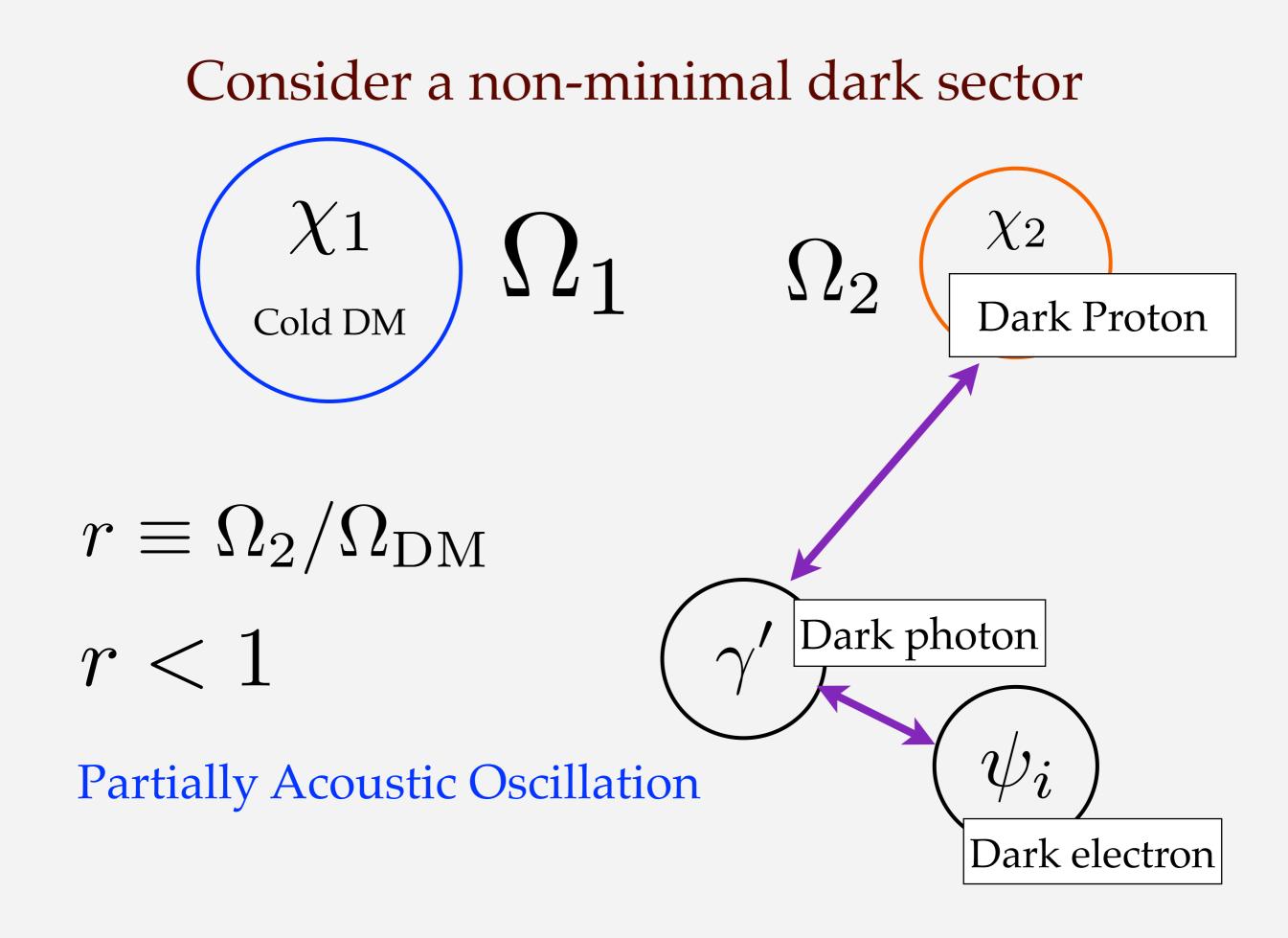


DISTRIBUTION OF GALAXIES IN OUR UNIVERSE. CREDIT: SDSS



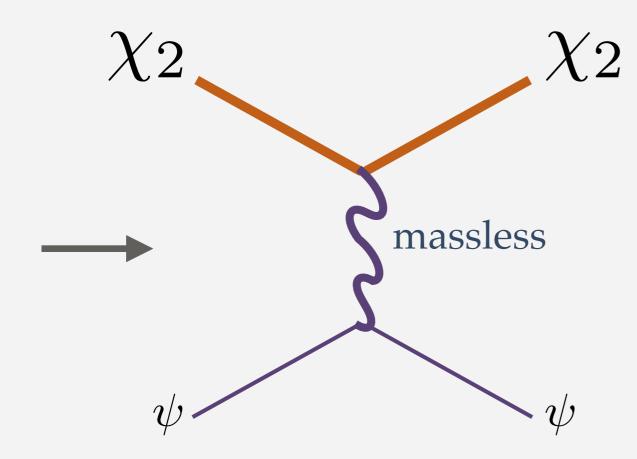






For the acoustic oscillation to exist

We need the DM-DR scattering to remain non-decoupled

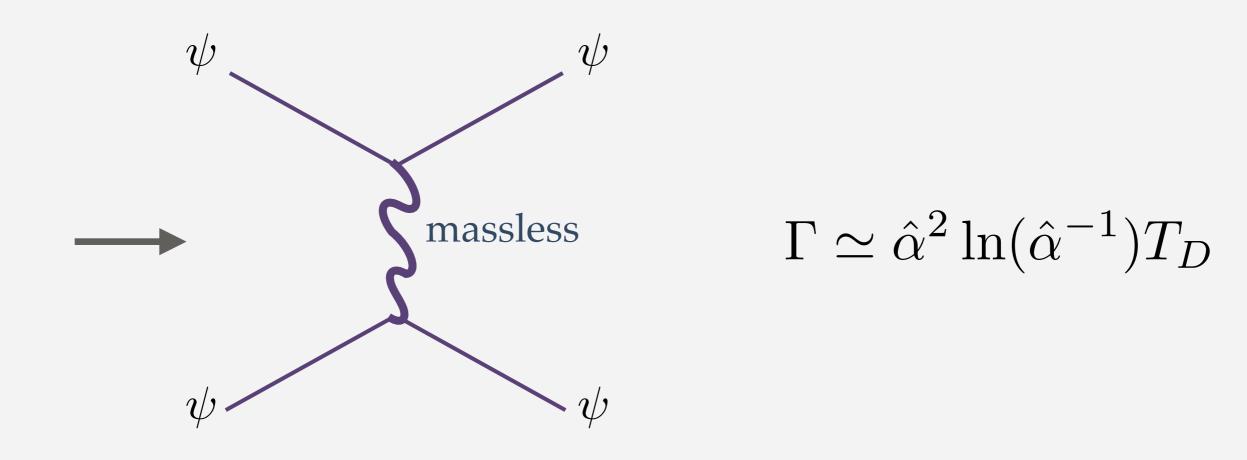


$$\Gamma \simeq \hat{\alpha}^2 \ln(\hat{\alpha}^{-1}) \frac{T_D^2}{m_{\rm DM}}$$

Same temp-dependence as Hubble in the radiation-dominant era

Tightly coupled dark radiation

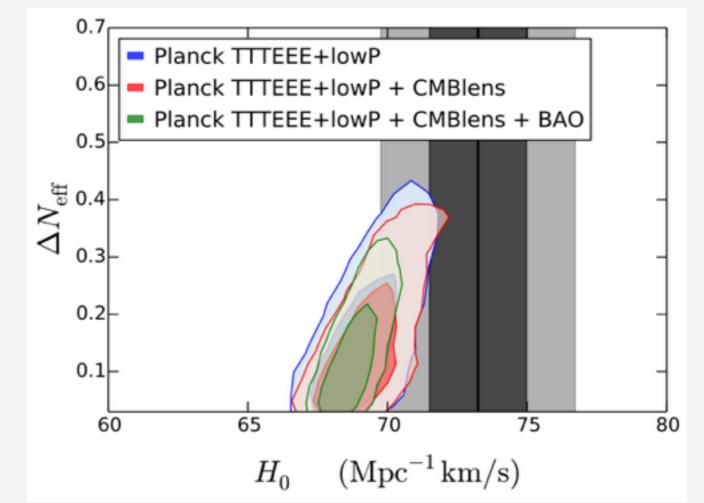
We need the DM-DR scattering to remain non-decoupled



The same coupling keeps dark fermions/photon a tightly coupled fluid

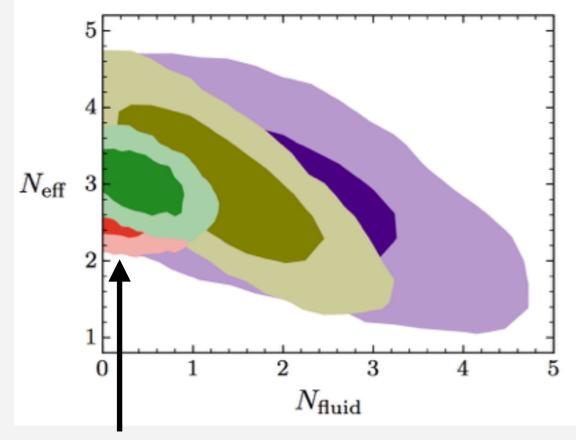
Solving H0 problem with extra dark radiation

Bernal et. al. 1607.05617



Can explain the larger H_0 by including $\Delta N_{\rm eff} > 0.4$ dark radiation Adam Riess et.al. 1604.01424

Dark fluid is better than FS-radiation

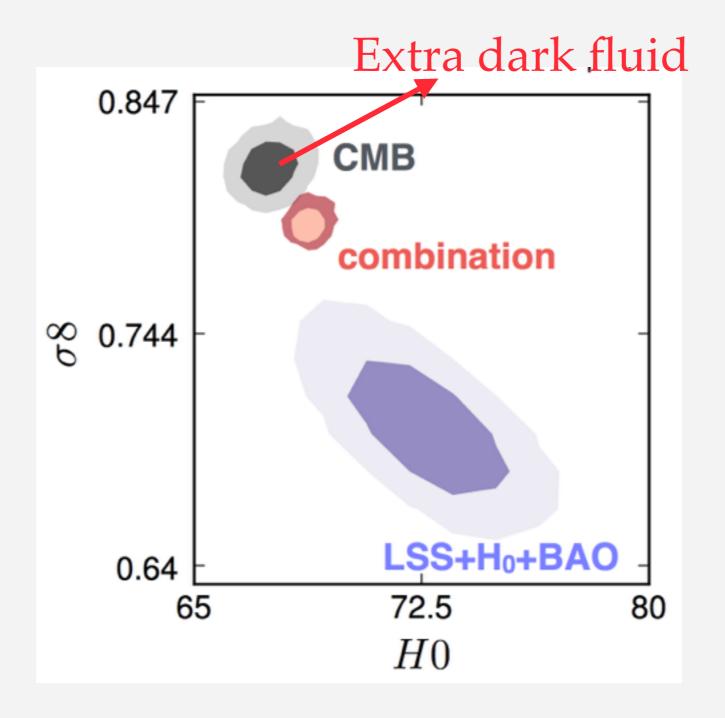


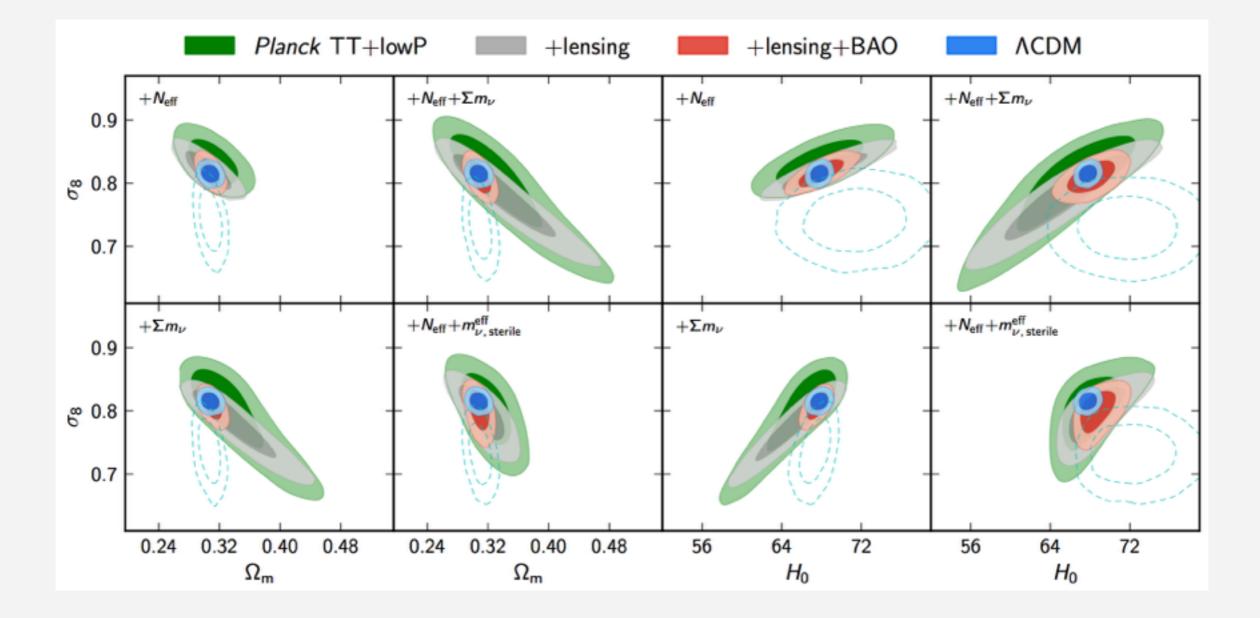
Planck TT, TE, and EE likelihoods

 $\Delta N_{\rm eff}$ bound on a tightly coupled fluid is weaker

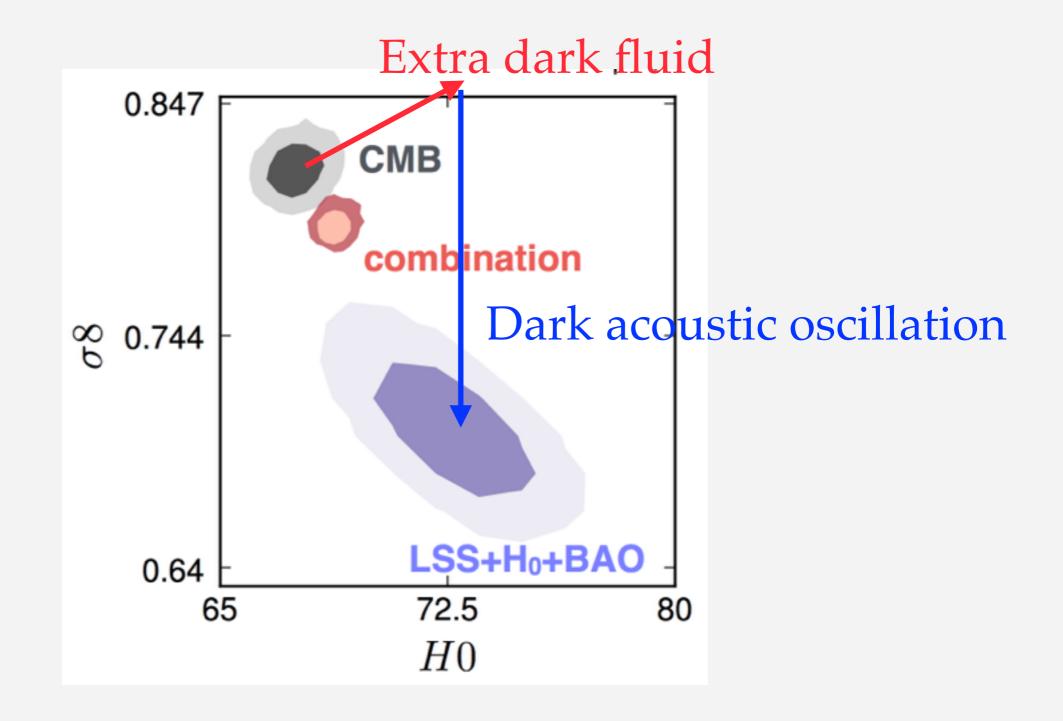
	TT, TE, EE		TT-only	
	varying Y_p	fixed Y_p	varying Y_p	fixed Y_p
$N_{ m eff}$ $N_{ m fluid}$	$\begin{array}{c} 2.78^{+0.30}_{-0.35} \\ < 0.88 \end{array}$	$\begin{array}{c} 2.99\substack{+0.30\\-0.29}\\<1.06\end{array}$	$2.87^{+0.76}_{-0.74} < 3.93$	$\begin{array}{c} 2.94^{+0.71}_{-0.69} \\ < 2.65 \end{array}$
		(2σ)		

Reconcile H0, but makes sigma8 worse

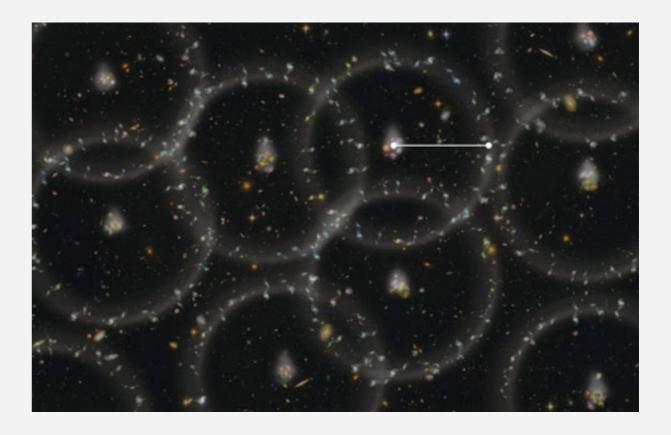




DM-DR scattering suppresses Sigma8

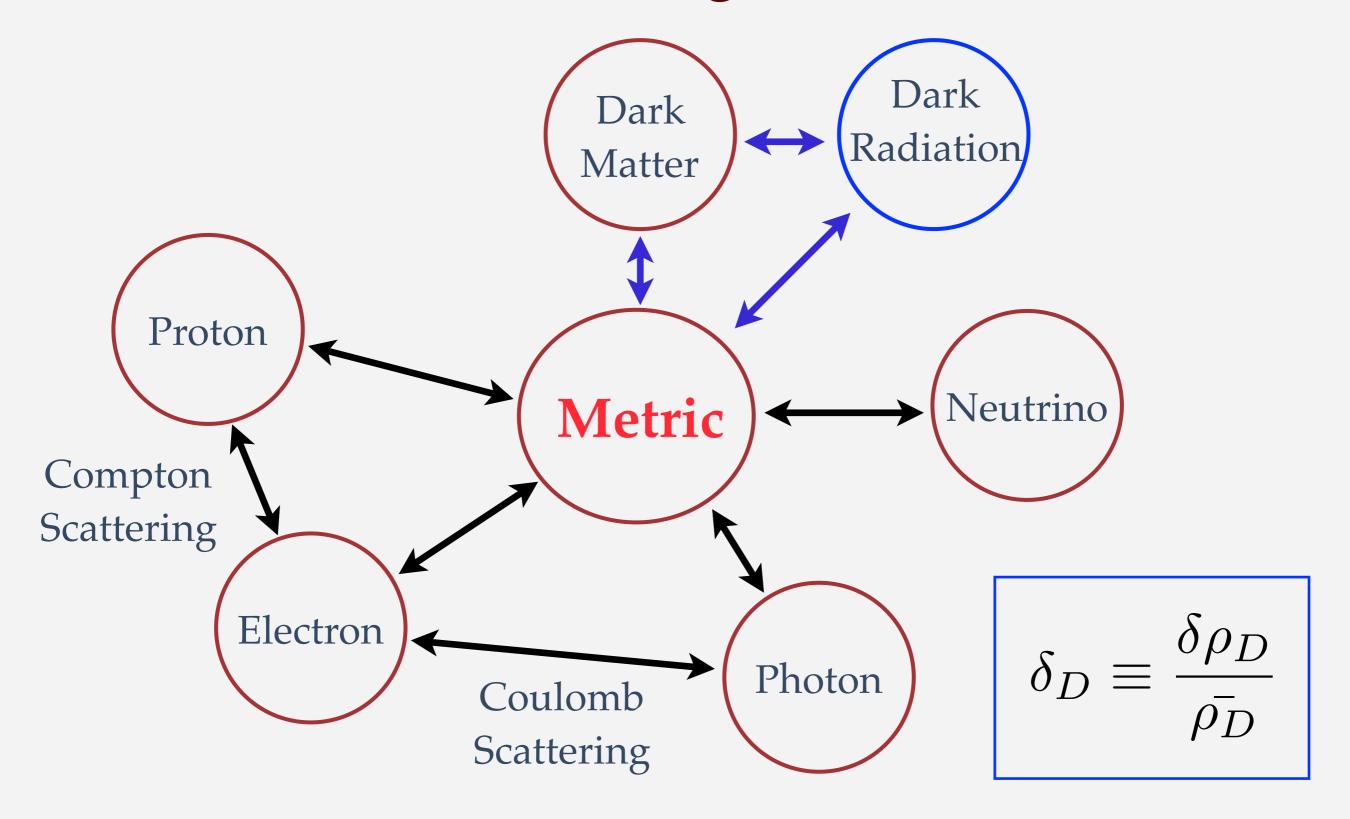


Structure Formation with Acoustic DM



A cartoon produced by the BOSS project showing the spheres of baryons around the initial dark matter clumps

Evolution of the Large Scale Structures



Boltzmann Equation in Conformal Newtonian Gauge

$$\begin{split} \dot{\delta}_D &= -\theta_D + 3\dot{\psi} \quad \left(\frac{d\rho}{dt} = -\rho\nabla \cdot \vec{v}\right) \\ \dot{\theta}_D &= -\frac{\dot{a}}{a}\theta_D + k^2\psi + \underline{a\Gamma(\theta_R - \theta_D)} \qquad \Gamma \equiv \frac{1}{\langle p_D^2 \rangle} \frac{d\langle \delta p_D^2 \rangle}{dt} \\ \dot{\delta}_R &= -\frac{4}{3}\theta_R + 4\dot{\psi} \\ \dot{\theta}_R &= \frac{k^2}{4}\delta_R + k^2\psi + \underline{R\,a\Gamma(\theta_D - \theta_R)} \end{split}$$

$$\begin{array}{l} \theta_s \equiv \partial_i v_s^i \quad \mbox{Velocity Divergent} & \mbox{Metric Perturbation} \\ ds^2 = a^2(\tau) [-(1+2\psi) d\tau^2 + (1-2\phi) \delta_{ij} dx^i dx^j] \\ & \mbox{No free-streaming particle} => \boxed{\phi = \psi} \end{array}$$

Boltzmann Equation in Conformal Newtonian Gauge

$$\begin{split} \dot{\delta}_{D} &= -\theta_{D} + 3\dot{\psi} \quad \left(\frac{d\rho}{dt} = -\rho\nabla \cdot \vec{v}\right) \qquad \Gamma \equiv \frac{1}{\langle p_{D}^{2} \rangle} \frac{d\langle \delta p_{D}^{2} \rangle}{dt} \\ \dot{\theta}_{D} &= -\frac{\dot{a}}{a}\theta_{D} + k^{2}\psi + \underline{a}\Gamma(\theta_{R} - \theta_{D}) \qquad \text{vanishes for cold DM,} \\ \dot{\delta}_{R} &= -\frac{4}{3}\theta_{R} + 4\dot{\psi} \\ \dot{\theta}_{R} &= \frac{k^{2}}{4}\delta_{R} + k^{2}\psi + \underline{R}\,a\Gamma(\theta_{D} - \theta_{R}) \qquad \begin{array}{l} \text{similar expression for SM baryon} \\ \text{similar expression for SM baryon} \\ \text{SM photon} \\ \end{array}$$

Tightly coupled DM-DR (similar to the baryon-photon system):

$$\Gamma \gg H \Rightarrow a\Gamma \gg \tau^{-1}$$

In the tightly coupled DM-DR limit

We can simplify the evolution of DM perturbation

$$\ddot{\delta}_D + \frac{\dot{a}}{a} \frac{R}{1+R} \dot{\delta}_D + \frac{k^2}{3(1+R)} \delta_D \simeq -k^2 \phi$$

$$R \equiv \frac{3\rho_D}{4\rho_R}$$

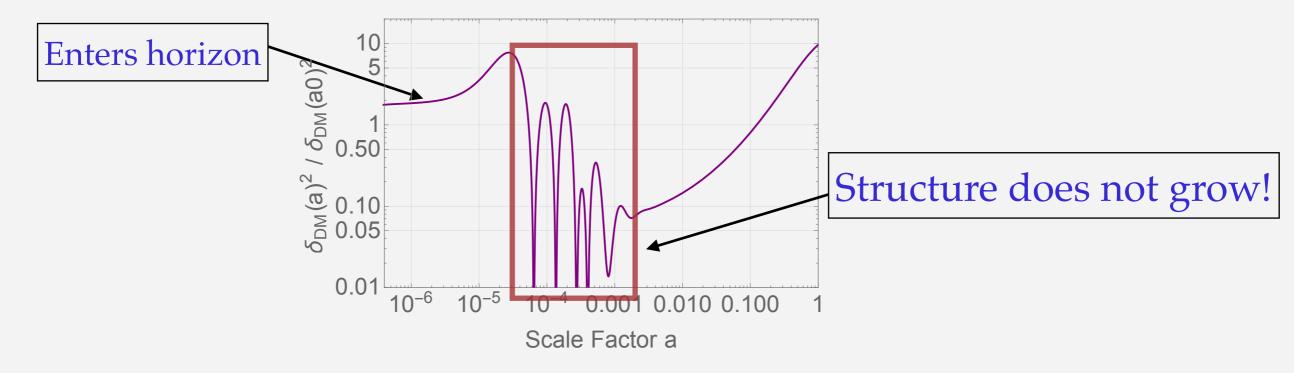
Parametrize the ``mass'' of DM-DR fluid

Radiation Domination, R << 1

Density perturbation oscillates => No structure grows

$$\ddot{\delta}_D + \frac{\dot{a}}{a} \frac{R}{1+R} \dot{\delta}_D + \frac{k^2}{3(1+R)} \delta_D \simeq -k^2 \phi$$

The density perturbation oscillates as a harmonic oscillator! Same physics as the baryon acoustic oscillation

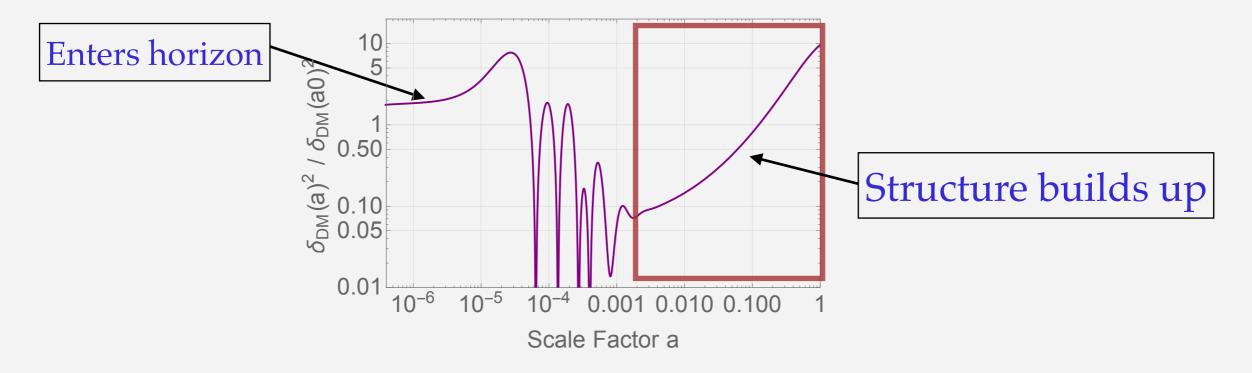


Matter Domination , R >> 1

No oscillation => Linear growth

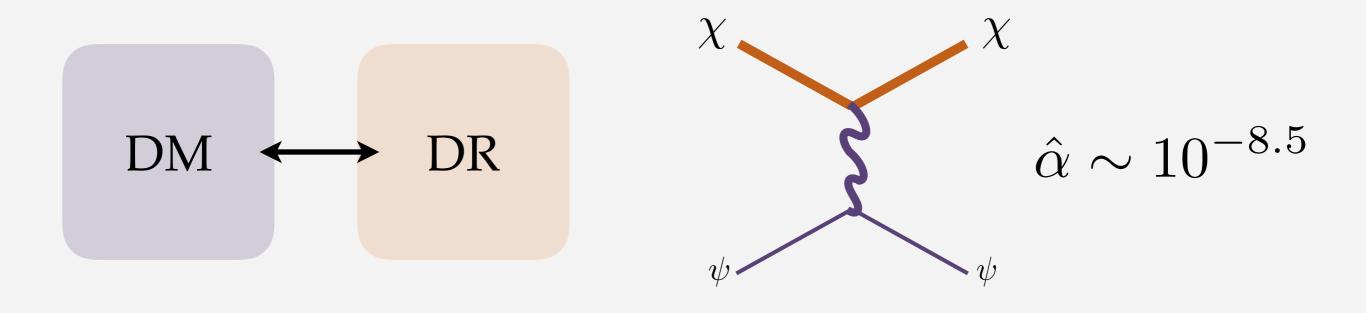
$$\ddot{\delta}_D + \frac{\dot{a}}{a} \frac{R}{1+R} \dot{\delta}_D + \frac{k^2}{3(1+R)} \delta_D \simeq -k^2 \phi$$

No oscillation, no damping from the DR scattering Same structure formation as cold DM



If all the DM particles oscillate with DR

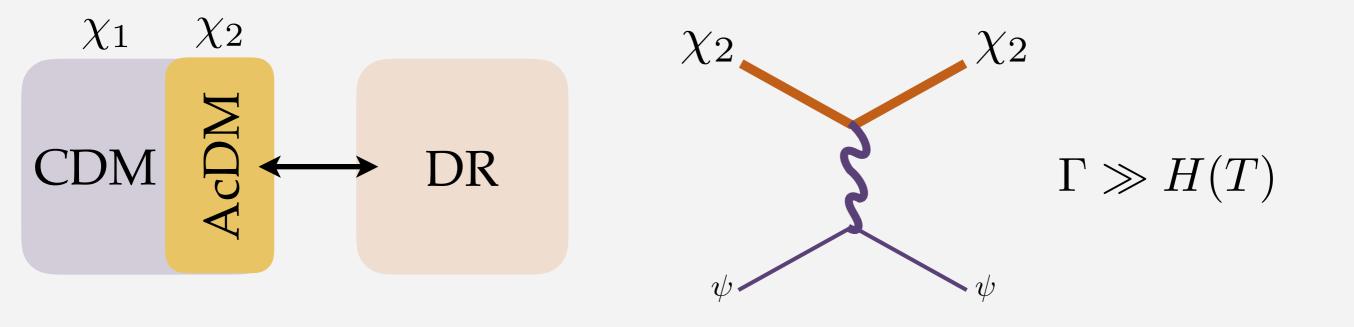
We need a small DM coupling for the right σ_8 suppression



Manuel A. Buen-Abad, Gustavo Marques-Tavares, and Martin Schmaltz (2015)

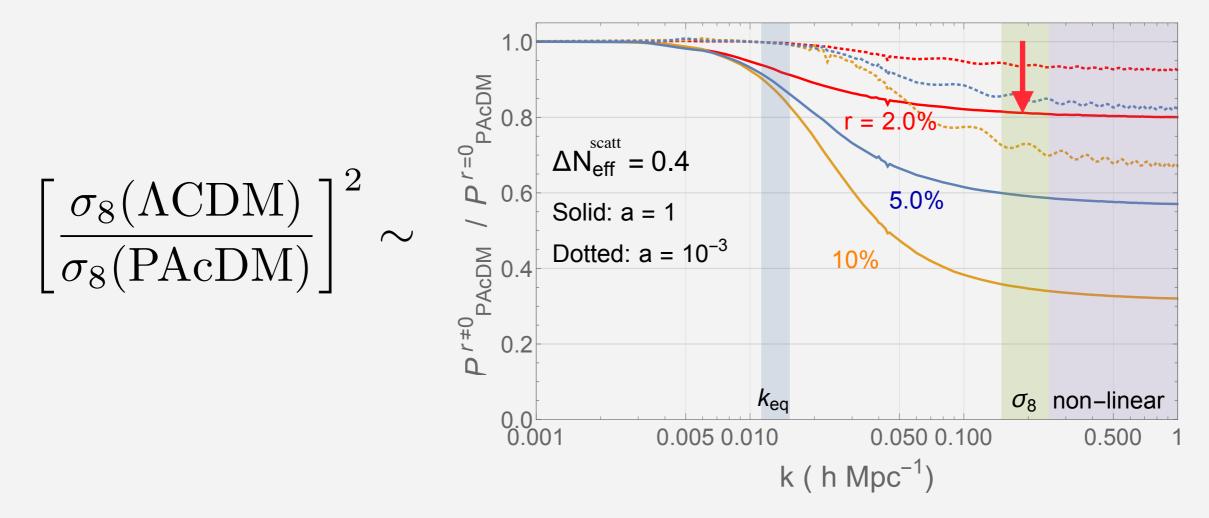
Julien Lesgourgues, Gustavo Marques-Tavares, and Martin Schmaltz (2015)

How about only a fraction of DM particles having the acoustic oscillation?



If only a small component DM has the acoustic oscillation, we can allow DM-DR to be tightly coupled (remain equilibrium) and solve DM perturbation analytically

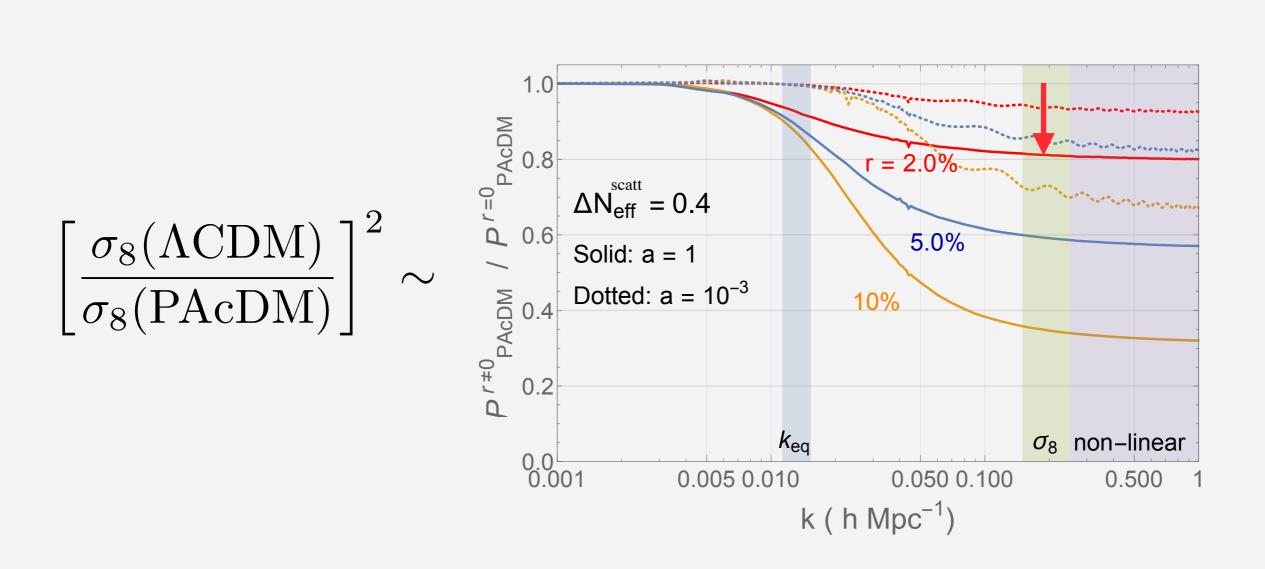
Solving Sigma8 problem with PAcDM



A simple analytical result

$$\frac{P(r)}{P(0)} \simeq (1 - 2r) \left(\frac{a}{a_{\rm eq}}\right)^{-1.2r} \qquad r \equiv \Omega_2 / \Omega_{\rm DM}$$

Solving Sigma8 problem with PAcDM



Need ~2% acoustic DM to solve the σ_8 problem

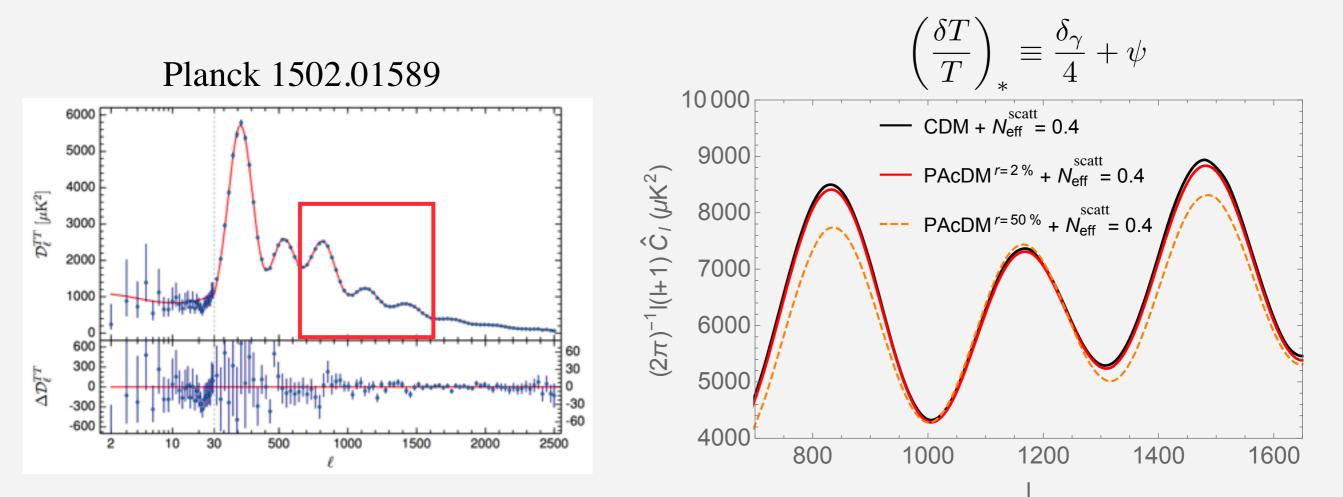
2% density is easy to obtained

When both DM particles are WIMP-like and having thermal freeze out through a heavy mediator

$$\frac{\Omega_2}{\Omega_1} \simeq \left(\frac{m_2}{m_1}\right)^2$$

Only need $m_1 \simeq 7 m_2$ to obtain the 2% ratio (assuming equal couplings)

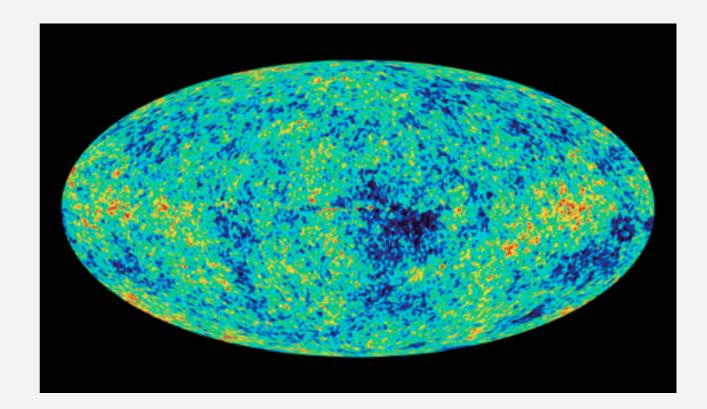
Correction to the CMB spectrum



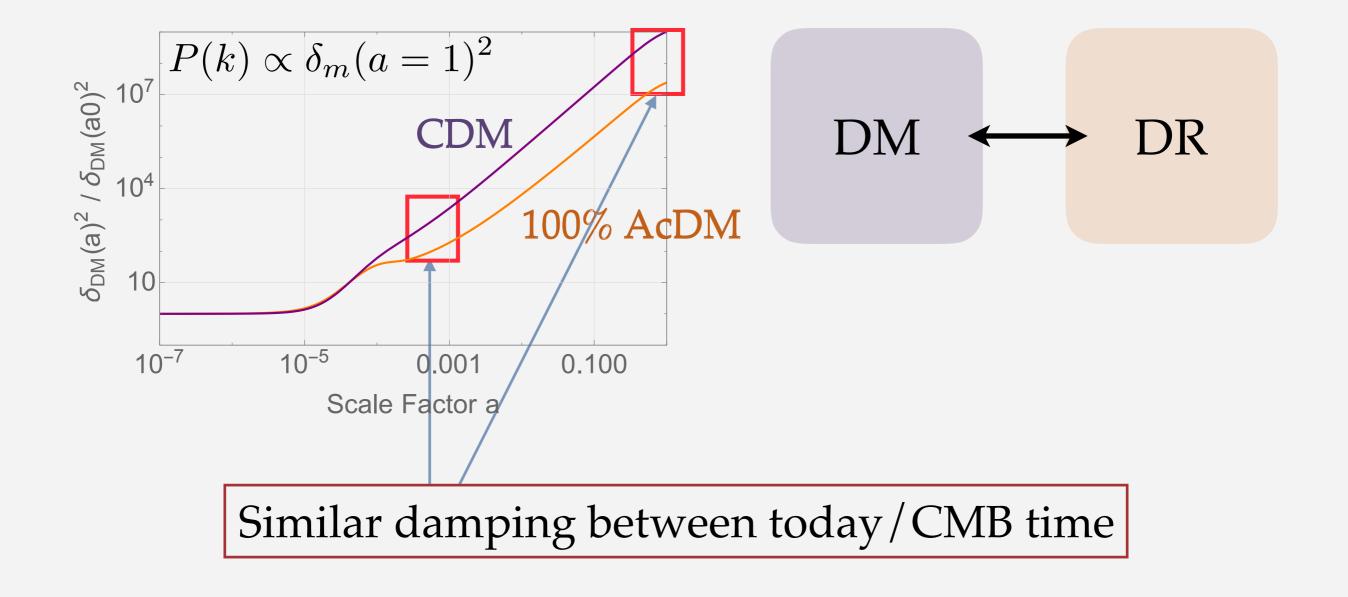
The pressure from dark fluid suppresses the compression peaks and enhances the expansion peaks

When r = 2%, the correction to CMB is less then ~ 2%, smaller then > 5% error bar in Planck result

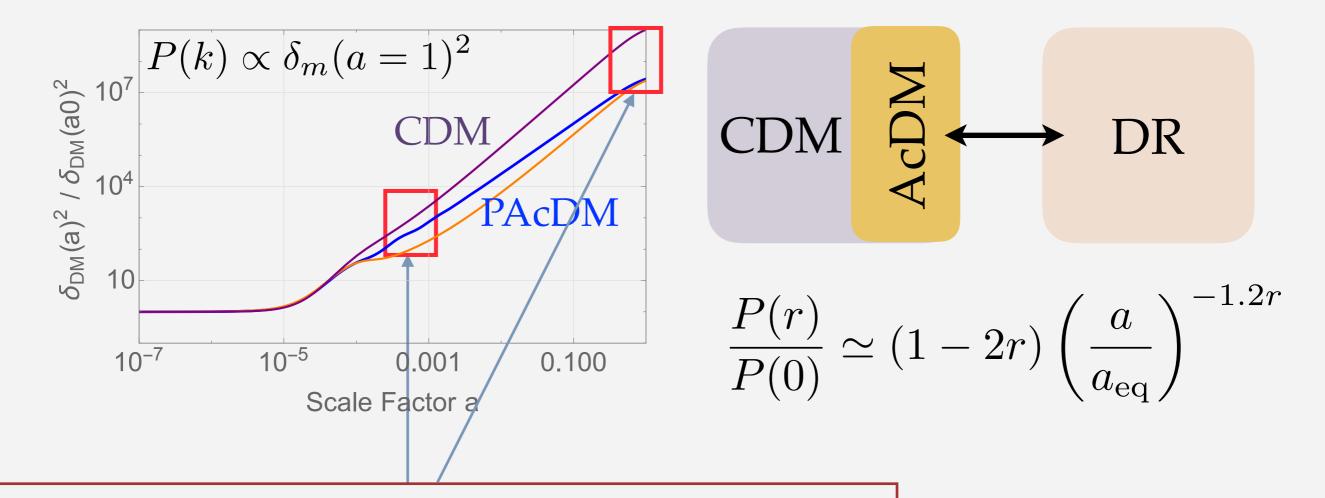
Why is the CMB correction so small in the Partially Acoustic DM case?



In the fully acoustic oscillation case



In the partially acoustic oscillation case



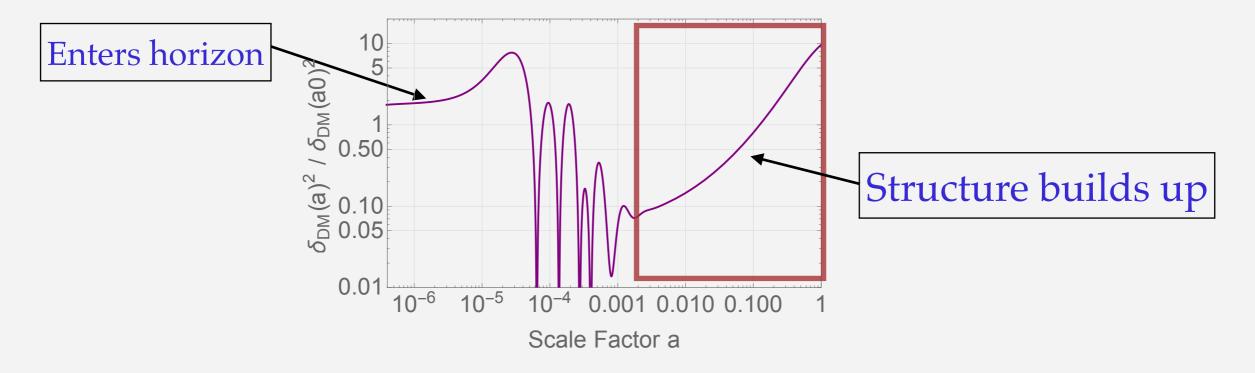
Structure grows slower comparing to CDM Smaller correction to the CMB spectrum

Matter Domination , R >> 1

No oscillation => Linear growth

$$\ddot{\delta}_D + \frac{2}{\tau}\dot{\delta}_D = -k^2\phi$$

No oscillation, no damping from the DR scattering Same structure formation as cold DM



Matter Domination , R >> 1

No oscillation => Linear growth

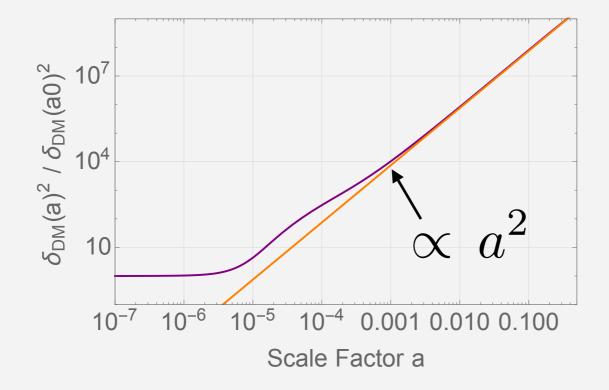
$$\ddot{\delta}_D + \frac{2}{\tau}\dot{\delta}_D = -k^2\phi$$

$$\frac{k^2 \phi = -4\pi G a^2 \sum_s \delta_s \rho_s}{\text{Einstein equation}} \approx \frac{-4\pi G a^2 \delta_D \rho_D}{\tau}$$

 $(\nabla^2 \phi = 4\pi G \rho$ Poisson's eq. for gravity)

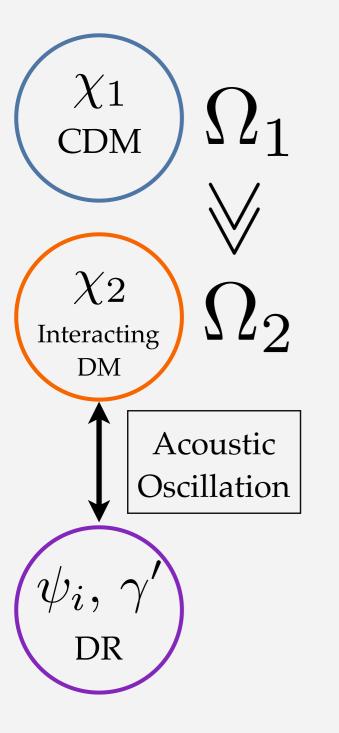
Linear growth of CDM

$$\ddot{\delta}_D + \frac{2}{\tau}\dot{\delta}_D = \frac{6}{\tau}\delta_D \quad \Rightarrow \quad \delta_D \propto \left(\frac{\tau}{\tau_{eq}}\right)^2 = \left(\frac{a}{a_{eq}}\right)^1$$



Density contrast in Cold DM case grows linearly in the deep matter-dominated era

In the partially acoustic case



Acoustic Oscillation

 $\Rightarrow \delta_1 \gg \delta_2$

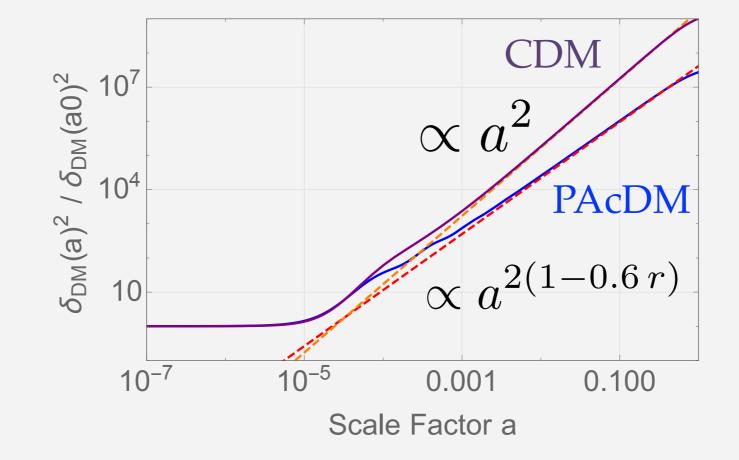
DM density contrast is determined by χ_1

$$\ddot{\delta}_1 + \frac{2}{\tau}\dot{\delta}_1 = -k^2\phi$$

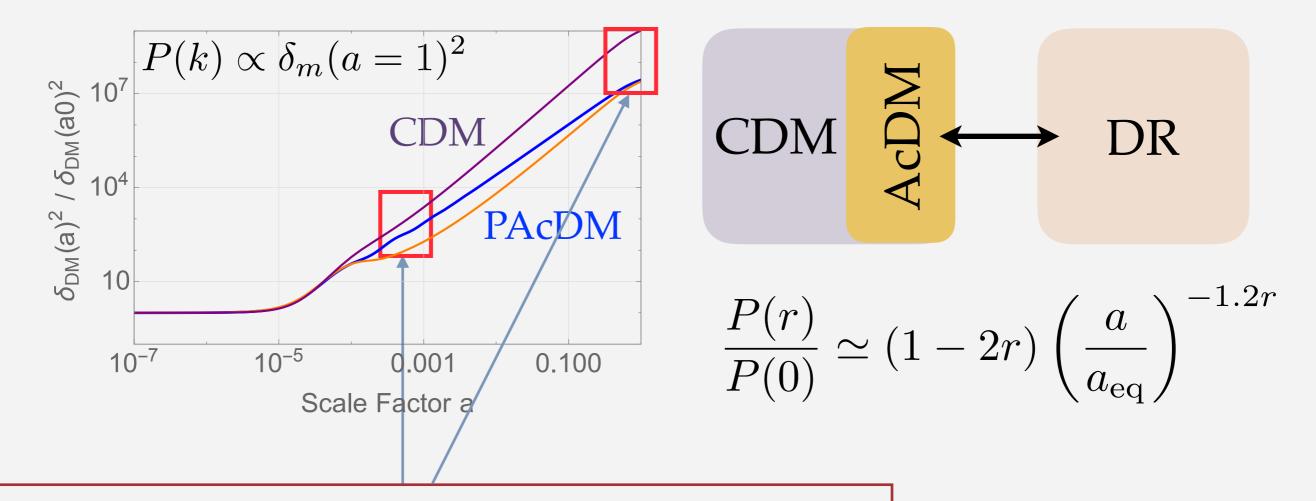
$$k^{2}\phi \simeq -4\pi Ga^{2}(\delta_{1}\rho_{1} + \delta_{2}\rho_{2})$$
$$= -\frac{6}{\tau}(1-r)\delta_{1} \quad r \equiv \frac{\rho_{2}}{\rho_{DM}}$$

The < 100% CDM case

$$\ddot{\delta}_1 + \frac{2}{\tau}\dot{\delta}_1 = \frac{6}{\tau}(1-r)\delta_1 \quad \Rightarrow \delta_1 \propto \left(\frac{a}{a_{eq}}\right)^{1-0.6r+\mathcal{O}(r^2)}$$



How about only a fraction of DM particles having the acoustic oscillation?



Structure grows slower comparing to CDM Smaller correction to the CMB spectrum

Conclusion

Large Scale Structure is sensitive to the dark sector dynamics

A smaller ratio of Cold DM

change the power-law growth of matter density spectrum

Acoustic Dark Oscillation suppresses the matter power spectrum

Having Dark Radiation change the expansion, different effects on CMB between free-streaming/self-scattering

May also change the small scale structure

Working on it now, stay tuned!