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The Mystery of Dark Matter

••  Rotation curves from Galaxies.Rotation curves from Galaxies.

Luminous disk        not enough mass to explain rotational

velocities of galaxies      Dark Matter halo around the  galaxies

• Gravitational lensing effects

Measuring the deformations of images of a large number

of galaxies, it is possible to infer the quantity of Dark 

Matter hidden between us and the observed galaxies

•   Structure formation:

Large scale structure   and  CMB Anisotropies

The manner in which structure grows depends on the amount and type of dark matter present. 

All viable models are dominated by cold dark matter.



Dark Matter Annihilation Rate
The main reason why we think there is a chance of observing dark 
matter is that, when we compute the annihilation rate necessary for a 
thermal relic density, we get a cross section

This is approximately

This suggests that it is probably
mediated by weakly interacting
particles with weak scale masses

Connection of  Thermal Dark Matter to the weak scale and to the 
mechanism of electroweak symmetry breaking 
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fermions                       fermions                       bosonsbosons

SupersymmetrySupersymmetry

electron                        electron                                      sselectronelectron

quark                              quark                                              ssquarkquark

photphotinoino                                                                      photonphoton

gravitgravitinoino                                                              gravitongraviton

Photino,  Zino and Neutral Higgsino:  Neutralinos

Charged Wino, charged Higgsino: Charginos

Particles and Sparticles share the same couplings to the Higgs. Two superpartners

of  the two quarks (one for each chirality) couple strongly to the Higgs with a 

Yukawa  coupling of order one (same as the top-quark Yukawa coupling)

Two Higgs doublets necessary � tan� = v2
v1

H,A H±

H̃0 H̃±

New Higgs Bosons

Additional 
Higgsinos



Consequences of SUSY

Unification SUSY Algebra

Quantum Gravity ?Electroweak Symmetry Breaking



Proton Decay
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• Both lepton and baryon number violating couplings involved.

• Proton: Lightest baryon. Lighter fermions: Leptons
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 Problem :

If all the couplings allowed by
supersymmetry and gauge 
invariance are present,  and take
values of order one, the 
proton would present a very 
fast  decay rate. 
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Baryon and Lepton Number Violation

• General superpotential contains, apart from the Yukawa couplings of
the Higgs to lepton and quark fields, new couplings:

P [�]new = �� LQD + � LLE + ��� UDD (41)

• Assigning every lepton chiral (antichiral) superfield lepton number 1
(-1) and every quark chiral (antichiral) superfield baryon number 1/3
(-1/3) one obtains :

– Interactions in P [�] conserve baryon and lepton number.

– Interactions in P [�]new violate either baryon or lepton number.

• One of the most dangerous consequences of these new interaction is
to induce proton decay, unless couplings are very small and/or
sfermions are very heavy.
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R-Parity

• A solution to the proton decay problem is to introduce a discrete
symmetry, called R-Parity. In the language of component fields,

RP = (�1)3B+2S+L (42)

• All Standard Model particles have RP = 1.

• All supersymmetric partners have RP = �1.

• All interactions with odd number of supersymmetric particles, like
the Yukawa couplings induced by P [�]new are forbidden.

• Supersymmetric particles should be produced in pairs.

• The lightest supersymmetric particle is stable.

• Good dark matter candidate. Missing energy at colliders.

Lectures on Supersymmetry Carlos E.M. Wagner, Argonne and EFI

0
1!

~

0
1!

~

Supersymmetry at colliders

! Lightest supersymmetric particle = Excellent          
Cold dark matter candidate.

Gluino production and decay: Missing Energy Signature

Supersymmetric
Particles tend to 
be heavier if they
carry color charges.

Particles with large 
Yukawas tend to be 
lighter.

Charge-less particles
tend to be the 
lightest ones.

28

Preservation of R-Parity:

inducing proton decay are forbidden.



Direct DM experiments: CDMS, ZEPLIN, EDELWEISS, CRESST,WARP,…

sensitive mainly to spin-independent elastic scattering cross section (                    )

==> dominated by virtual exchange of H and h

•  tan!  enhanced couplings of H to strange,

             and to gluons via bottom loops  

� 

! SI "10
#8
pb

                       Direct Detection Dark Matter Experiments

••  Collider experiments can find evidence of DM through       signature

but no conclusive proof of the stability of a WIMP

••        Direct Detection Experiments can establish the existence of Dark Matter particles

E
T

WIMPs elastically scatter off nuclei in targets,

 producing nuclear recoils

R = N
i

i

!  "# $
i#

where in the last line we have neglected the differences between the proton and the neutron
mass and the fT factors are relatively similar. Assuming that the mass of the neutralino is
much larger than the nucleus we have mr ∼ mN ∼ Amp.

σSI ≈
4A2m2

p

π
A2f 2

p (8)

⇒
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1g

2
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13m
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4πm2
WM4

A
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where σSI/A4 is the neutralino nucleon spin-independent cross-section.

2.2 B-physics Constraints and the scale of supersymmetry break-

ing

The FCNCs induced by loops of squarks depend on the flavor structure of the soft squark
mass parameters which is closely tied to the scale of supersymmetry breaking. Assuming
the squark masses are flavor independent at high energies, the only one-loop corrections that
violate flavor are due to the up and down Yukawa matrices because the gauge interactions
are flavor blind. The corrections to left-handed soft SUSY breaking mass parameter are
given by [14]

∆M2
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≃ −

1

8π2

[

(

2m2
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0

)
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MSUSY
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,

(10)
where Q̃ denote the left-handed squarks, m0 is the common squark mass at the scale of
the messenger mass M at which supersymmetry breaking is transmitted to the observable
sector, M2

Hu,d
(0) and A0 are the Higgs soft supersymmetry breaking masses and squark-Higgs

trilinear mass parameters at that scale, and MSUSY is the characteristic low energy squark
mass scale. Similarly, the right-handed up and down squark mass matrices, receive one-loop
Yukawa-induced corrections proportional to

∆M2
ũR

= −
2

8π2

(

2m2
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0

)

YuY
†
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and

∆M2
d̃R

= −
2

8π2

(

2m2
0 + M2

Hd
(0) + A2

0

)

YdY
†
d log

(

M
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, (12)

respectively. Hence the corrections to the right-handed soft mass parameters are diagonal
in the quark basis, but the left-handed soft mass parameters of the down squarks pick up
off-diagonal contributions proportional to the CKM matrix elements. The size of these
corrections depend on the scale M at which SUSY breaking is communicated to the visible
sector. If M is on the order of MSUSY then these corrections are small and if M ≃ MGUT

then these corrections can be substantial. In this section we consider the effect of these two
scenarios on three B-physics processes b → sγ, Bu → τν and Bs → µ+µ−.
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Prospects for direct Dark Matter Detection
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Figure 3: The maximum value of the spin-independent χ scattering cross section off protons,
as a function of the Higgs mass mH and for two values of mχ. We have assumed eq. (121)
at the chargino mass scale, and taken tanβ = 10. No constraints on Ωχ are used, assuming
that gravitino decay accounts for the correct value of Ωχ.

does not exceed the observed value. The requirement (Ωχh2)th < 0.129 gives

mχ <
(

c

10−2

)1/2
(

28
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)1/2 [

g∗(Tf)

86.25

]1/4

2TeV, (107)

where c and xf are defined in eqs. (80)–(81). The value of the non-thermal Ωχ computed

in this section has to be added to the thermal result in eq. (106) and therefore it can only

lead to an upper bound on mχ which is stronger than eq. (107). Even in the case in which

the gravitino dominates the universe and dilutes the initial χ abundance, the upper bound

on mχ is tightened. Indeed, for a gravitino-dominated universe, eq. (97) applies. Then we

can interpret eq. (98) as an upper bound on mχ, as a function of m3/2. This bound becomes

less stringent as m3/2 grows, but a maximum allowed value of m3/2 is determined by the

condition T3/2 < Tf in eq. (82). For the value of m3/2 corresponding to T3/2 = Tf we find an

upper bound on mχ which coincides with eq. (107), while for other values of m3/2 the bound

is stronger. The only exception in which the neutralino mass could be much larger than the

value determined by eq. (107) occurs in the extreme case when TR is of the order of Tf [23].

5.2 Case mχ < m3/2 <∼ 105 GeV

In this m3/2 range, the anomaly-mediated contributions to soft masses are acceptable and

they can actually account for the entire values of gaugino masses, since they give [24] M1 ≃

27

The prospects for direct and indirect dark-matter detection are also affected. Neutrali-

nos with large annihilation cross sections can properly account for the dark matter, be-

cause of gravitino decay. Since squarks are heavy, the only contribution to spin-independent

neutralino-nuclei interactions comes from Higgs-boson exchange [21]. The χ scattering cross

section off a proton is given by
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8
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⎣
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γ2 5.4 × 10−43 cm2, (102)

where [22] f (p)
u = 0.023, f (p)

d = 0.034, f (p)
s = 0.14 and γ measures the Higgs coupling with

the LSP neutralino

γ =
1

g
(g̃uNχ2Nχ4 − g̃dNχ2Nχ3 − g̃′

uNχ1Nχ4 + g̃′
dNχ1Nχ3) . (103)

Here Nχi are the lightest neutralino components in standard notations and g̃u,d, g̃′
u,d are the

higgsino couplings (see sect. 6). The coefficient γ vanishes if χ is a pure Higgsino or gaugino

and in the limit µ, M1,2 ≫ MZ becomes (assuming M2 > M1)

γ = cos θW MZ
(g̃′2
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u )M1 + 2g̃′
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The maximum value of γ is reached when M1 ≃ µ. In this degenerate limit, eq. (104) is no

longer valid, and it is replaced by

γ =
g̃′

u + g̃′
d

2
√
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+ cos θW
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8g2

[

2
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The second term in the expansion is actually numerically important because it is enhanced

with respect to the leading term by a coefficient 1/ tan θW . Notice that the maximal value

of γ, given by eq. (105), is actually achieved in a large portion of the parameter space of

Split Supersymmetry, leading to an appropriate dark-matter thermal abundance [8]. This is

because an efficient annihilation rate approximately requires M1 ≃ µ. In fig. 3 we show the

spin-independent χ scattering cross section off protons, without requiring any constraints

on Ωχ and therefore assuming that gravitino decay accounts for the correct value of Ωχ.

The rate is within the reach of future experiments, which can reach 10−44–10−45 cm2 for

mχ < 1 TeV.

We also want to stress that the gravitino decay process does not weaken the link between

neutralino masses and the weak scale. This link is based on the upper bound on the χ mass

derived by the requirement that the thermal relic abundance (for s-wave annihilation)

(
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The prospects for direct and indirect dark-matter detection are also affected. Neutrali-

nos with large annihilation cross sections can properly account for the dark matter, be-

cause of gravitino decay. Since squarks are heavy, the only contribution to spin-independent

neutralino-nuclei interactions comes from Higgs-boson exchange [21]. The χ scattering cross

section off a proton is given by
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where [22] f (p)
u = 0.023, f (p)

d = 0.034, f (p)
s = 0.14 and γ measures the Higgs coupling with

the LSP neutralino

γ =
1

g
(g̃uNχ2Nχ4 − g̃dNχ2Nχ3 − g̃′

uNχ1Nχ4 + g̃′
dNχ1Nχ3) . (103)

Here Nχi are the lightest neutralino components in standard notations and g̃u,d, g̃′
u,d are the

higgsino couplings (see sect. 6). The coefficient γ vanishes if χ is a pure Higgsino or gaugino

and in the limit µ, M1,2 ≫ MZ becomes (assuming M2 > M1)

γ = cos θW MZ
(g̃′2
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The maximum value of γ is reached when M1 ≃ µ. In this degenerate limit, eq. (104) is no

longer valid, and it is replaced by

γ =
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2
√
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The second term in the expansion is actually numerically important because it is enhanced

with respect to the leading term by a coefficient 1/ tan θW . Notice that the maximal value

of γ, given by eq. (105), is actually achieved in a large portion of the parameter space of

Split Supersymmetry, leading to an appropriate dark-matter thermal abundance [8]. This is

because an efficient annihilation rate approximately requires M1 ≃ µ. In fig. 3 we show the

spin-independent χ scattering cross section off protons, without requiring any constraints

on Ωχ and therefore assuming that gravitino decay accounts for the correct value of Ωχ.

The rate is within the reach of future experiments, which can reach 10−44–10−45 cm2 for

mχ < 1 TeV.

We also want to stress that the gravitino decay process does not weaken the link between

neutralino masses and the weak scale. This link is based on the upper bound on the χ mass

derived by the requirement that the thermal relic abundance (for s-wave annihilation)

(
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1 pb = 10�36 cm2, 1 zb = 10�45 cm2 “Typical” scenarios
constrained by data

Current Limits



Prospects for direct Dark Matter Detection
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Figure 3: The maximum value of the spin-independent χ scattering cross section off protons,
as a function of the Higgs mass mH and for two values of mχ. We have assumed eq. (121)
at the chargino mass scale, and taken tanβ = 10. No constraints on Ωχ are used, assuming
that gravitino decay accounts for the correct value of Ωχ.

does not exceed the observed value. The requirement (Ωχh2)th < 0.129 gives

mχ <
(
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where c and xf are defined in eqs. (80)–(81). The value of the non-thermal Ωχ computed

in this section has to be added to the thermal result in eq. (106) and therefore it can only

lead to an upper bound on mχ which is stronger than eq. (107). Even in the case in which

the gravitino dominates the universe and dilutes the initial χ abundance, the upper bound

on mχ is tightened. Indeed, for a gravitino-dominated universe, eq. (97) applies. Then we

can interpret eq. (98) as an upper bound on mχ, as a function of m3/2. This bound becomes

less stringent as m3/2 grows, but a maximum allowed value of m3/2 is determined by the

condition T3/2 < Tf in eq. (82). For the value of m3/2 corresponding to T3/2 = Tf we find an

upper bound on mχ which coincides with eq. (107), while for other values of m3/2 the bound

is stronger. The only exception in which the neutralino mass could be much larger than the

value determined by eq. (107) occurs in the extreme case when TR is of the order of Tf [23].

5.2 Case mχ < m3/2 <∼ 105 GeV

In this m3/2 range, the anomaly-mediated contributions to soft masses are acceptable and

they can actually account for the entire values of gaugino masses, since they give [24] M1 ≃

27

The prospects for direct and indirect dark-matter detection are also affected. Neutrali-

nos with large annihilation cross sections can properly account for the dark matter, be-

cause of gravitino decay. Since squarks are heavy, the only contribution to spin-independent

neutralino-nuclei interactions comes from Higgs-boson exchange [21]. The χ scattering cross

section off a proton is given by
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where [22] f (p)
u = 0.023, f (p)

d = 0.034, f (p)
s = 0.14 and γ measures the Higgs coupling with

the LSP neutralino

γ =
1

g
(g̃uNχ2Nχ4 − g̃dNχ2Nχ3 − g̃′

uNχ1Nχ4 + g̃′
dNχ1Nχ3) . (103)

Here Nχi are the lightest neutralino components in standard notations and g̃u,d, g̃′
u,d are the

higgsino couplings (see sect. 6). The coefficient γ vanishes if χ is a pure Higgsino or gaugino

and in the limit µ, M1,2 ≫ MZ becomes (assuming M2 > M1)

γ = cos θW MZ
(g̃′2

d + g̃′2
u )M1 + 2g̃′

ug̃
′
dµ

g2(µ2 − M2
1 )

+ O
(

M2
Z

M2
1,2

,
M2

Z

µ2

)

. (104)

The maximum value of γ is reached when M1 ≃ µ. In this degenerate limit, eq. (104) is no

longer valid, and it is replaced by
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The second term in the expansion is actually numerically important because it is enhanced

with respect to the leading term by a coefficient 1/ tan θW . Notice that the maximal value

of γ, given by eq. (105), is actually achieved in a large portion of the parameter space of

Split Supersymmetry, leading to an appropriate dark-matter thermal abundance [8]. This is

because an efficient annihilation rate approximately requires M1 ≃ µ. In fig. 3 we show the

spin-independent χ scattering cross section off protons, without requiring any constraints

on Ωχ and therefore assuming that gravitino decay accounts for the correct value of Ωχ.

The rate is within the reach of future experiments, which can reach 10−44–10−45 cm2 for

mχ < 1 TeV.

We also want to stress that the gravitino decay process does not weaken the link between

neutralino masses and the weak scale. This link is based on the upper bound on the χ mass

derived by the requirement that the thermal relic abundance (for s-wave annihilation)
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The prospects for direct and indirect dark-matter detection are also affected. Neutrali-

nos with large annihilation cross sections can properly account for the dark matter, be-

cause of gravitino decay. Since squarks are heavy, the only contribution to spin-independent

neutralino-nuclei interactions comes from Higgs-boson exchange [21]. The χ scattering cross

section off a proton is given by
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where [22] f (p)
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d = 0.034, f (p)
s = 0.14 and γ measures the Higgs coupling with

the LSP neutralino

γ =
1
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Here Nχi are the lightest neutralino components in standard notations and g̃u,d, g̃′
u,d are the

higgsino couplings (see sect. 6). The coefficient γ vanishes if χ is a pure Higgsino or gaugino

and in the limit µ, M1,2 ≫ MZ becomes (assuming M2 > M1)
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The maximum value of γ is reached when M1 ≃ µ. In this degenerate limit, eq. (104) is no

longer valid, and it is replaced by
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The second term in the expansion is actually numerically important because it is enhanced

with respect to the leading term by a coefficient 1/ tan θW . Notice that the maximal value

of γ, given by eq. (105), is actually achieved in a large portion of the parameter space of

Split Supersymmetry, leading to an appropriate dark-matter thermal abundance [8]. This is

because an efficient annihilation rate approximately requires M1 ≃ µ. In fig. 3 we show the

spin-independent χ scattering cross section off protons, without requiring any constraints

on Ωχ and therefore assuming that gravitino decay accounts for the correct value of Ωχ.

The rate is within the reach of future experiments, which can reach 10−44–10−45 cm2 for

mχ < 1 TeV.

We also want to stress that the gravitino decay process does not weaken the link between

neutralino masses and the weak scale. This link is based on the upper bound on the χ mass

derived by the requirement that the thermal relic abundance (for s-wave annihilation)
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1 pb = 10�36 cm2, 1 zb = 10�45 cm2 Typical scenarios
constrained by data

Projected Bounds
(with better neutrino floor estimate)



An important case, often referred to as the “decoupling limit”, occurs when mA0 ≫ mZ . Then the
tree-level prediction for mh0 saturates its upper bound mentioned above, with m2

h0 ≈ m2
Z cos2(2β)+

loop corrections. The particles A0, H0, and H± will be much heavier and nearly degenerate, forming
an isospin doublet that decouples from sufficiently low-energy processes. The angle α is very nearly
β − π/2, with

cos(β − α) = sin(2β) cos(2β)m2
Z/m

2
A0 +O(m4

Z/m
4
A0), (8.1.36)

sin(β − α) = 1−O(m4
Z/m

4
A0), (8.1.37)

so that h0 has nearly the same couplings to quarks and leptons and electroweak gauge bosons as would
the Higgs boson of the ordinary Standard Model without supersymmetry. Radiative corrections modify
these tree-level predictions, but model-building experiences have shown that it is not uncommon for
h0 to behave in a way nearly indistinguishable from a Standard Model-like Higgs boson, even if mA0

is not too huge. The measurements of the 125 GeV Higgs boson observed at the LHC are indeed
consistent, so far, with the Standard Model predictions, and it is sensible to identify this particle with
h0. However, it should be kept in mind that the couplings of h0 might still turn out to deviate in
measurable ways from those of a Standard Model Higgs boson. After including the effects of radiative
corrections, the most significant effect for moderately large mA0 is a possible enhancement of the h0bb
coupling compared to the value it would have in the Standard Model.

8.2 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of electroweak
symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d ) and the neutral gauginos (B̃, W̃ 0) combine

to form four mass eigenstates called neutralinos. The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+

and W̃−) mix to form two mass eigenstates with charge ±1 called charginos. We will denote† the
neutralino and chargino mass eigenstates by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these
are labeled in ascending order, so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest

neutralino, Ñ1, is usually assumed to be the LSP, unless there is a lighter gravitino or unless R-parity
is not conserved, because it is the only MSSM particle that can make a good dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and charginos in
the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass part of the Lagrangian is

Lneutralino mass = −1

2
(ψ0)TM

Ñ
ψ0 + c.c., (8.2.1)

where

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −µ

g′vu/
√
2 −gvu/

√
2 −µ 0

⎞

⎟⎟⎠ . (8.2.2)

The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian [see eq. (6.3.1)],
while the entries −µ are the supersymmetric higgsino mass terms [see eq. (6.1.4)]. The terms propor-
tional to g, g′ are the result of Higgs-higgsino-gaugino couplings [see eq. (3.4.9) and Figure 3.3g,h], with

†Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃

±
i or W̃±

i for charginos.
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the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ

=

⎛

⎜⎜⎝

M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

⎞

⎟⎟⎠ . (8.2.3)

Here we have introduced abbreviations sβ = sin β, cβ = cos β, sW = sin θW , and cW = cos θW . The
mass matrix M

Ñ
can be diagonalized by a unitary matrix N to obtain mass eigenstates:

Ñi = Nijψ
0
j , (8.2.4)

so that

N∗M
Ñ
N−1 =

⎛

⎜⎜⎜⎝

m
Ñ1

0 0 0
0 m

Ñ2
0 0

0 0 m
Ñ3

0
0 0 0 m

Ñ4

⎞

⎟⎟⎟⎠ (8.2.5)

has real positive entries on the diagonal. These are the magnitudes of the eigenvalues of M
Ñ
, or

equivalently the square roots of the eigenvalues of M†
Ñ
M

Ñ
. The indices (i, j) on Nij are (mass, gauge)

eigenstate labels. The mass eigenvalues and the mixing matrix Nij can be given in closed form in
terms of the parameters M1, M2, µ and tan β, by solving quartic equations, but the results are very
complicated and not illuminating.

In general, the parameters M1, M2, and µ in the equations above can have arbitrary complex
phases. A redefinition of the phases of B̃ and W̃ always allows us to choose a convention in which M1

and M2 are both real and positive. The phase of µ within that convention is then really a physical
parameter and cannot be rotated away. [We have already used up the freedom to redefine the phases
of the Higgs fields, since we have picked b and ⟨H0

u⟩ and ⟨H0
d ⟩ to be real and positive, to guarantee

that the off-diagonal entries in eq. (8.2.3) proportional to mZ are real.] However, if µ is not real, then
there can be potentially disastrous CP-violating effects in low-energy physics, including electric dipole
moments for both the electron and the neutron. Therefore, it is usual [although not strictly mandatory,
because of the possibility of nontrivial cancellations involving the phases of the (scalar)3 couplings and
the gluino mass] to assume that µ is real in the same set of phase conventions that make M1, M2, b,
⟨H0

u⟩ and ⟨H0
d ⟩ real and positive. The sign of µ is still undetermined by this constraint.

In models that satisfy eq. (6.5.27), one has the nice prediction

M1 ≈
5

3
tan2 θW M2 ≈ 0.5M2 (8.2.6)

at the electroweak scale. If so, then the neutralino masses and mixing angles depend on only three
unknown parameters. This assumption is sufficiently theoretically compelling that it has been made
in most phenomenological studies; nevertheless it should be recognized as an assumption, to be tested
someday by experiment.

There is a not-unlikely limit in which electroweak symmetry breaking effects can be viewed as a
small perturbation on the neutralino mass matrix. If

mZ ≪ |µ±M1|, |µ±M2|, (8.2.7)

then the neutralino mass eigenstates are very nearly a “bino-like” Ñ1 ≈ B̃; a “wino-like” Ñ2 ≈ W̃ 0;
and “higgsino-like” Ñ3, Ñ4 ≈ (H̃0

u ± H̃0
d)/

√
2, with mass eigenvalues:

m
Ñ1

= M1 −
m2

Zs
2
W (M1 + µ sin 2β)

µ2 −M2
1

+ . . . (8.2.8)

103

the Higgs scalars replaced by their VEVs [eqs. (8.1.6), (8.1.7)]. This can also be written as

M
Ñ
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and “higgsino-like” Ñ3, Ñ4 ≈ (H̃0

u ± H̃0
d)/

√
2, with mass eigenvalues:

m
Ñ1
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Neutralino Mixing in the MSSM
In the basis of fermion super partners of the gauge and Higgs fields

One can write a neutralino mass matrix that mix these states
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First consider a neutralino scattering o↵ a down-type quark. As stated above, the am-

plitude associated with the heavy, non-standard Higgs exchange is enhanced by tan �. At

the tree level, the down-quarks only couples to the neutral Hd component of the Higgs. The

CP-even Higgs mass eigenstates can be expressed in terms of the gauge eigenstates as

h =
1p
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(cos↵ Hu � sin↵ Hd) (1)

H =
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(sin↵ Hd + cos↵ Hu). (2)

Therefore, the down-quark contribution to the SI amplitude is proportional to
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Given the interactions

L � �
p
2g0YHuB̃H̃uH
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p
2gW̃ aH̃ut

aH⇤
u + (u $ d) (4)

and the decomposition of a neutralino mass eigenstate

�̃ = Ni1 B̃ +Ni2 W̃ +Ni3 H̃d +Ni4 H̃u, (5)
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Relevant Direct Dark Matter Detection Amplitudes

For down quarks, for example
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the couplings of a light or a heavy Higgs to the neutralinos are

g��h ⇠ (g1Ni1 � g2Ni2)(� cos↵ Ni4 � sin↵ Ni3) (6)

g��H ⇠ (g1Ni1 � g2Ni2)(� sin↵ Ni4 + cos↵ Ni3). (7)

Then the down-quark contribution to the SI amplitude is given by

ad ⇠ md(g1Ni1 � g2Ni2)

cos �


Ni4 sin↵ cos↵

✓
1

m2
h

� 1

m2
H

◆
+Ni3

✓
sin2 ↵

m2
h

+
cos2 ↵

m2
H

◆�
(8)

In the above, we neglected the possible couplings of the down-quarks to the neutral compo-

nents of the Higgs Hu, which are induced after supersymmetry breaking. Including them,

the one loop coupling of a down quark to the neutral higgs field is given by

L = fdd̄LdRH
0
d + ✏dfdd̄LdRH

0⇤
u + h.c., (9)

which modifies the higgs coupling to down quarks. Then Eq. (8) becomes

(10)
ad ⇠ m̄d(g1Ni1 � g2Ni2)

cos �
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Ni4 sin↵ cos↵
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m2
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m2
h
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cos2 ↵(1 + ✏d tan↵)

m2
H

◆�
,

where ✏d ⇡ 2↵s
3⇡ M3µC0(m2

0,m
2
R, |M3|2) [34], m̄d ⌘ md

1+✏d tan�
and

C0(X, Y, Z) =
y

(x� y)(z � y)
log(y/x) +

z

(x� z)(y � z)
log(z/x). (11)

The quantity ✏d is suppressed if the first and second generation squarks are much larger than

the gluino mass M3 and the Higgsino mass parameter µ. In the following, for simplicity, we

shall assume that such a large hierarchy is present and thus in the rest of our analysis, ✏d

is set to zero. The main e↵ect of these corrections is to modify the coupling of the heavy

Higgs boson by a few tens of percent at very large values of tan �, what leads to a small

modification of the precise value of mH at which the blind spot is present.

Following ref [35], Ni3 and Ni4 are proportional to

Ni3 ⇠ (m� cos � + µ sin �) (12)

Ni4 ⇠ (m� sin � + µ cos �). (13)

Also, barring the case in which mA is of the order of mh, for this analysis, we can take the

decoupling limit values of mH and sin↵, namely, mH ⇡ mA, and sin↵ ⇡ � cos �. In this
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It is a product of the gaugino component and the Higgsino components, times the gauge couplings

Combining all the previous information, we get

From the structure of the neutralino mass matrix, one obtains that
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For moderate values of tanβ and close to the decoupling limit, one obtains 

The quark couplings allow us to obtain the expression for the proton and neutron couplings

cos↵ ' sin�, sin↵ ' � cos�Proper SM-like Higgs properties :



6

case, the amplitude becomes proportional to

ad ⇠ md

cos �


cos �(m� + µ sin 2�)

1

m2
h

� µ sin � cos 2�
1

m2
H

�
. (14)

We can do a similar exercise for a neutralino scattering o↵ an up-type quark, which gives

au ⇠ mu

sin �


sin �(m� + µ sin 2�)

1

m2
h

+ µ cos � cos 2�
1

m2
H

�
. (15)

Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as

ap =

 
X

q=u,d,s

f
(p)
Tq

aq
mq

+
2

27
f
(p)
TG

X

q=c,b,t

aq
mq

!
mp, (16)

where f
(p)
Tu = 0.017 ± 0.008, f (p)

Td = 0.028 ± 0.014, f (p)
Ts = 0.040 ± 0.020 and f

(p)
TG ⇡ 0.91 are

the quark form factors [36, 37] defined as

< p|mqqq̄|p >⌘ mpf
(p)
Tq , f

(p)
TG = 1�

X
f
(p)
Tq . (17)

. Using equations (14) and (15), then the SI scattering cross section is proportional to

�SI
p ⇠


(F (p)

d + F (p)
u )(m� + µ sin 2�)

1

m2
h

+ µ tan � cos 2�(�F
(p)
d + F (p)

u /tan2 �)
1

m2
H

�2
, (18)

with F
(p)
u ⌘ f

(p)
u + 2 ⇥ 2

27f
(p)
TG ⇡ 0.15 and F

(p)
d = f

(p)
Td + f

(p)
Ts + 2

27f
(p)
TG ⇡ 0.14. The first term

denotes the contribution of the lightest Higgs and its cancellation leads to the traditional

blind spot scenarios [29]. The second term is the contribution of the heavy Higgs and as

mentioned before for values of |µ|>⇠ m� and large tan � may become of the same order as

the SM-like Higgs one.

In the above, we have used the proton scattering amplitudes to define the spin indepen-

dent scattering cross section. The result remains valid after including the neutron contri-

butions, since for a neutralino scattering o↵ a neutron the form factors are f
(n)
Tu = 0.011,

f
(n)
Td = 0.0273, f (n)

Ts = 0.0447 and f
(n)
TG =0.917 [38] and therefore F (n)

u ⇡ 0.15 and F
(n)
d ⇡ 0.14,

same as F (p)
u and F

(p)
d .

Therefore, the tree-level scattering cross section due to the light and heavy CP-even Higgs

exchange cancel against each other when

(F (p)
d + F (p)

u )(m� + µ sin 2�)
1

m2
h

' F
(p)
d µ tan � cos 2�

1

m2
H

, (19)

6

case, the amplitude becomes proportional to

ad ⇠ md

cos �


cos �(m� + µ sin 2�)

1

m2
h

� µ sin � cos 2�
1

m2
H

�
. (14)

We can do a similar exercise for a neutralino scattering o↵ an up-type quark, which gives

au ⇠ mu

sin �


sin �(m� + µ sin 2�)

1

m2
h

+ µ cos � cos 2�
1

m2
H

�
. (15)

Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as

ap =

 
X

q=u,d,s

f
(p)
Tq

aq
mq

+
2

27
f
(p)
TG

X

q=c,b,t

aq
mq

!
mp, (16)

where f
(p)
Tu = 0.017 ± 0.008, f (p)

Td = 0.028 ± 0.014, f (p)
Ts = 0.040 ± 0.020 and f

(p)
TG ⇡ 0.91 are

the quark form factors [36, 37] defined as

< p|mqqq̄|p >⌘ mpf
(p)
Tq , f

(p)
TG = 1�

X
f
(p)
Tq . (17)

. Using equations (14) and (15), then the SI scattering cross section is proportional to

�SI
p ⇠


(F (p)

d + F (p)
u )(m� + µ sin 2�)

1

m2
h

+ µ tan � cos 2�(�F
(p)
d + F (p)

u /tan2 �)
1

m2
H

�2
, (18)

with F
(p)
u ⌘ f

(p)
u + 2 ⇥ 2

27f
(p)
TG ⇡ 0.15 and F

(p)
d = f

(p)
Td + f

(p)
Ts + 2

27f
(p)
TG ⇡ 0.14. The first term

denotes the contribution of the lightest Higgs and its cancellation leads to the traditional

blind spot scenarios [29]. The second term is the contribution of the heavy Higgs and as

mentioned before for values of |µ|>⇠ m� and large tan � may become of the same order as

the SM-like Higgs one.

In the above, we have used the proton scattering amplitudes to define the spin indepen-

dent scattering cross section. The result remains valid after including the neutron contri-

butions, since for a neutralino scattering o↵ a neutron the form factors are f
(n)
Tu = 0.011,

f
(n)
Td = 0.0273, f (n)

Ts = 0.0447 and f
(n)
TG =0.917 [38] and therefore F (n)

u ⇡ 0.15 and F
(n)
d ⇡ 0.14,

same as F (p)
u and F

(p)
d .

Therefore, the tree-level scattering cross section due to the light and heavy CP-even Higgs

exchange cancel against each other when

(F (p)
d + F (p)

u )(m� + µ sin 2�)
1

m2
h

' F
(p)
d µ tan � cos 2�

1

m2
H

, (19)

6

case, the amplitude becomes proportional to

ad ⇠ md

cos �


cos �(m� + µ sin 2�)

1

m2
h

� µ sin � cos 2�
1

m2
H

�
. (14)

We can do a similar exercise for a neutralino scattering o↵ an up-type quark, which gives

au ⇠ mu

sin �


sin �(m� + µ sin 2�)

1

m2
h

+ µ cos � cos 2�
1

m2
H

�
. (15)

Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as

ap =

 
X

q=u,d,s

f
(p)
Tq

aq
mq

+
2

27
f
(p)
TG

X

q=c,b,t

aq
mq

!
mp, (16)

where f
(p)
Tu = 0.017 ± 0.008, f (p)

Td = 0.028 ± 0.014, f (p)
Ts = 0.040 ± 0.020 and f

(p)
TG ⇡ 0.91 are

the quark form factors [36, 37] defined as

< p|mqqq̄|p >⌘ mpf
(p)
Tq , f

(p)
TG = 1�

X
f
(p)
Tq . (17)

. Using equations (14) and (15), then the SI scattering cross section is proportional to

�SI
p ⇠


(F (p)

d + F (p)
u )(m� + µ sin 2�)

1

m2
h

+ µ tan � cos 2�(�F
(p)
d + F (p)

u /tan2 �)
1

m2
H

�2
, (18)

with F
(p)
u ⌘ f

(p)
u + 2 ⇥ 2

27f
(p)
TG ⇡ 0.15 and F

(p)
d = f

(p)
Td + f

(p)
Ts + 2

27f
(p)
TG ⇡ 0.14. The first term

denotes the contribution of the lightest Higgs and its cancellation leads to the traditional

blind spot scenarios [29]. The second term is the contribution of the heavy Higgs and as

mentioned before for values of |µ|>⇠ m� and large tan � may become of the same order as

the SM-like Higgs one.

In the above, we have used the proton scattering amplitudes to define the spin indepen-

dent scattering cross section. The result remains valid after including the neutron contri-

butions, since for a neutralino scattering o↵ a neutron the form factors are f
(n)
Tu = 0.011,

f
(n)
Td = 0.0273, f (n)

Ts = 0.0447 and f
(n)
TG =0.917 [38] and therefore F (n)

u ⇡ 0.15 and F
(n)
d ⇡ 0.14,

same as F (p)
u and F

(p)
d .

Therefore, the tree-level scattering cross section due to the light and heavy CP-even Higgs

exchange cancel against each other when

(F (p)
d + F (p)

u )(m� + µ sin 2�)
1

m2
h

' F
(p)
d µ tan � cos 2�

1

m2
H

, (19)

6

case, the amplitude becomes proportional to

ad ⇠ md

cos �


cos �(m� + µ sin 2�)

1

m2
h

� µ sin � cos 2�
1

m2
H

�
. (14)

We can do a similar exercise for a neutralino scattering o↵ an up-type quark, which gives

au ⇠ mu

sin �


sin �(m� + µ sin 2�)

1

m2
h

+ µ cos � cos 2�
1

m2
H

�
. (15)

Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as

ap =

 
X

q=u,d,s

f
(p)
Tq

aq
mq

+
2

27
f
(p)
TG

X

q=c,b,t

aq
mq

!
mp, (16)

where f
(p)
Tu = 0.017 ± 0.008, f (p)

Td = 0.028 ± 0.014, f (p)
Ts = 0.040 ± 0.020 and f

(p)
TG ⇡ 0.91 are

the quark form factors [36, 37] defined as

< p|mqqq̄|p >⌘ mpf
(p)
Tq , f

(p)
TG = 1�

X
f
(p)
Tq . (17)

. Using equations (14) and (15), then the SI scattering cross section is proportional to

�SI
p ⇠


(F (p)

d + F (p)
u )(m� + µ sin 2�)

1

m2
h

+ µ tan � cos 2�(�F
(p)
d + F (p)

u /tan2 �)
1

m2
H

�2
, (18)

with F
(p)
u ⌘ f

(p)
u + 2 ⇥ 2

27f
(p)
TG ⇡ 0.15 and F

(p)
d = f

(p)
Td + f

(p)
Ts + 2

27f
(p)
TG ⇡ 0.14. The first term

denotes the contribution of the lightest Higgs and its cancellation leads to the traditional

blind spot scenarios [29]. The second term is the contribution of the heavy Higgs and as

mentioned before for values of |µ|>⇠ m� and large tan � may become of the same order as

the SM-like Higgs one.

In the above, we have used the proton scattering amplitudes to define the spin indepen-

dent scattering cross section. The result remains valid after including the neutron contri-

butions, since for a neutralino scattering o↵ a neutron the form factors are f
(n)
Tu = 0.011,

f
(n)
Td = 0.0273, f (n)

Ts = 0.0447 and f
(n)
TG =0.917 [38] and therefore F (n)

u ⇡ 0.15 and F
(n)
d ⇡ 0.14,

same as F (p)
u and F

(p)
d .

Therefore, the tree-level scattering cross section due to the light and heavy CP-even Higgs

exchange cancel against each other when

(F (p)
d + F (p)

u )(m� + µ sin 2�)
1

m2
h

' F
(p)
d µ tan � cos 2�

1

m2
H

, (19)

6

case, the amplitude becomes proportional to

ad ⇠ md

cos �


cos �(m� + µ sin 2�)

1

m2
h

� µ sin � cos 2�
1

m2
H

�
. (14)

We can do a similar exercise for a neutralino scattering o↵ an up-type quark, which gives

au ⇠ mu

sin �


sin �(m� + µ sin 2�)

1

m2
h

+ µ cos � cos 2�
1

m2
H

�
. (15)

Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as

ap =

 
X

q=u,d,s

f
(p)
Tq

aq
mq

+
2

27
f
(p)
TG

X

q=c,b,t

aq
mq

!
mp, (16)

where f
(p)
Tu = 0.017 ± 0.008, f (p)

Td = 0.028 ± 0.014, f (p)
Ts = 0.040 ± 0.020 and f

(p)
TG ⇡ 0.91 are

the quark form factors [36, 37] defined as

< p|mqqq̄|p >⌘ mpf
(p)
Tq , f

(p)
TG = 1�

X
f
(p)
Tq . (17)

. Using equations (14) and (15), then the SI scattering cross section is proportional to

�SI
p ⇠


(F (p)

d + F (p)
u )(m� + µ sin 2�)

1

m2
h

+ µ tan � cos 2�(�F
(p)
d + F (p)

u /tan2 �)
1

m2
H

�2
, (18)

with F
(p)
u ⌘ f

(p)
u + 2 ⇥ 2

27f
(p)
TG ⇡ 0.15 and F

(p)
d = f

(p)
Td + f

(p)
Ts + 2

27f
(p)
TG ⇡ 0.14. The first term

denotes the contribution of the lightest Higgs and its cancellation leads to the traditional

blind spot scenarios [29]. The second term is the contribution of the heavy Higgs and as

mentioned before for values of |µ|>⇠ m� and large tan � may become of the same order as

the SM-like Higgs one.

In the above, we have used the proton scattering amplitudes to define the spin indepen-

dent scattering cross section. The result remains valid after including the neutron contri-

butions, since for a neutralino scattering o↵ a neutron the form factors are f
(n)
Tu = 0.011,

f
(n)
Td = 0.0273, f (n)

Ts = 0.0447 and f
(n)
TG =0.917 [38] and therefore F (n)

u ⇡ 0.15 and F
(n)
d ⇡ 0.14,

same as F (p)
u and F

(p)
d .

Therefore, the tree-level scattering cross section due to the light and heavy CP-even Higgs

exchange cancel against each other when

(F (p)
d + F (p)

u )(m� + µ sin 2�)
1

m2
h

' F
(p)
d µ tan � cos 2�

1

m2
H

, (19)

6

case, the amplitude becomes proportional to

ad ⇠ md

cos �


cos �(m� + µ sin 2�)

1

m2
h

� µ sin � cos 2�
1

m2
H

�
. (14)

We can do a similar exercise for a neutralino scattering o↵ an up-type quark, which gives

au ⇠ mu

sin �


sin �(m� + µ sin 2�)

1

m2
h

+ µ cos � cos 2�
1

m2
H

�
. (15)

Include the contributions from all quarks, including the gluon induced ones, the SI scattering

cross section can be expressed as

ap =

 
X

q=u,d,s

f
(p)
Tq

aq
mq

+
2

27
f
(p)
TG

X

q=c,b,t

aq
mq

!
mp, (16)

where f
(p)
Tu = 0.017 ± 0.008, f (p)

Td = 0.028 ± 0.014, f (p)
Ts = 0.040 ± 0.020 and f

(p)
TG ⇡ 0.91 are

the quark form factors [36, 37] defined as

< p|mqqq̄|p >⌘ mpf
(p)
Tq , f

(p)
TG = 1�

X
f
(p)
Tq . (17)

. Using equations (14) and (15), then the SI scattering cross section is proportional to

�SI
p ⇠


(F (p)

d + F (p)
u )(m� + µ sin 2�)

1

m2
h

+ µ tan � cos 2�(�F
(p)
d + F (p)

u /tan2 �)
1

m2
H

�2
, (18)

with F
(p)
u ⌘ f

(p)
u + 2 ⇥ 2

27f
(p)
TG ⇡ 0.15 and F

(p)
d = f

(p)
Td + f

(p)
Ts + 2

27f
(p)
TG ⇡ 0.14. The first term

denotes the contribution of the lightest Higgs and its cancellation leads to the traditional

blind spot scenarios [29]. The second term is the contribution of the heavy Higgs and as

mentioned before for values of |µ|>⇠ m� and large tan � may become of the same order as

the SM-like Higgs one.

In the above, we have used the proton scattering amplitudes to define the spin indepen-

dent scattering cross section. The result remains valid after including the neutron contri-

butions, since for a neutralino scattering o↵ a neutron the form factors are f
(n)
Tu = 0.011,

f
(n)
Td = 0.0273, f (n)

Ts = 0.0447 and f
(n)
TG =0.917 [38] and therefore F (n)

u ⇡ 0.15 and F
(n)
d ⇡ 0.14,

same as F (p)
u and F

(p)
d .

Therefore, the tree-level scattering cross section due to the light and heavy CP-even Higgs

exchange cancel against each other when

(F (p)
d + F (p)

u )(m� + µ sin 2�)
1

m2
h

' F
(p)
d µ tan � cos 2�

1

m2
H

, (19)

Direct Dark Matter Detection Cross Section

Putting all together, one gets

with

One can do a similar calculation for neutrons, and the expression is very similar. Indeed, 
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which we call generalized blind spots. Taking into account the values of F (p,n)
u and F

(p,n)
d

given above, and for moderate or large values of tan �, the blind spot can be simplified as
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' � µ tan �
1

m2
H

(20)

Similar to the case in which the heavy Higgs decouples, for intermediate values of mA the

suppression due to the blind spots only happens when µ < 0. This e↵ect was studied

before [30, 31, 33], and the suppression in DDMD was identified numerically from a scan of

the parameter space of the CMSSM. Our expressions provide an analytical understanding

of this phenomenon. We find out that indeed, as can be seen from Eqs. (18)–(20), negative

values of µ have two e↵ects on the scattering amplitudes : On one hand, they suppress

the coupling of the lightest neutralino to the lightest CP-even Higgs boson. On the other

hand, they lead to a negative interference between the light and heavy Higgs exchange

amplitudes. For su�ciently low values ofmA (large values of tan �) the heavy Higgs exchange

contribution may become dominant. On the other hand, for large values of mA the SM

contribution becomes dominant and the main contribution from exchange of a heavy Higgs

comes from the interference with the SM-like one and is only suppressed by 1/m2
A.

III. NUMERICAL STUDY

To perform a numerical study of the SI scattering cross section when all sfermions are

heavy, the relevant parameters are the Bino mass M1, the Wino mass M2, the Higgsino mass

µ, the CP odd Higgs mass mA and tan �. In the following, we will concentrate on the case

in which LSP is mostly bino-like for simplicity, but the analysis can be easily generalized

to the case in which LSP is wino-like. In the traditional blind spot scenario, at moderate

or large values of tan � the blind spot condition, m� + µ sin 2� = 0, can only be satisfied if

|µ| is very large, which makes the obtention of the right thermal relic density very di�cult.

The generalized blind spots, instead, may be obtained for smaller values of |µ|, which may

be consistent with the ones necessary to obtain a thermal DM density.

In order to analyze the parameters consistent with the generalized blind spots, we first

look at the parameter space away from the traditional blind spot, µ ⇠ �2M1. We use

ISAJET [39] to calculate the spectrum and the SI scattering cross section for di↵erent

values of tan � and mA, which agrees with MicrOMEGA 2.4.5 [38] almost perfectly. We

The cross section is greatly reduced when the parameters fulfill the 
approximate relation

which at moderate or large values of tanβ reduce to

We shall call this region of parameters the “blind spot region”
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FIG. 2: SI scattering cross section as a function of mA for tan� = 50 (up left), tan� = 30 (up
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.

is enhanced by tan �, but since µ grows together with tan �, the down-Higgsino component

is suppressed roughly by tan �. At large mA, the cross section approaches 10�13 pb�1, which

is below the atmospheric and di↵use supernova neutrino backgrounds. There are various

contributions to this asymptotic value, including squarks, incomplete cancellation of the

couplings and loop e↵ects.

We also analyze the relic density. Considering a thermally produced neutralino DM, the

annihilation cross section is too small for Bino-like DM, which leads to DM density over

abundance, while the annihilation is too e�cient for pure wino or Higgsino-like DM, which

results in under abundance unless the LSP is heavier than 1 TeV [41, 42] or 2.7 TeV [42, 43],

Dependence of the cross section on the heavy Higgs mass 
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Sensitivity
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Application of the naive blind spot formula gives MA = 478 GeV
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FIG. 4: SI DDMD cross section in the µ � M1 plane for various values of tan� and mA, in pb.

The purple dots are where the calculated relic density agrees with the WMAP value. The blue

lines show the blind spot calculated from Eq, (19), and the red lines show the traditional blind

spot where m� + µ sin 2� = 0.

studied in this article, and therefore we shall not discuss them further. Similarly, the Higgs

mass is obtained by pushing the stop masses to the order of a few TeV and an appropriate

mixing parameter. Such heavy stops do not a↵ect the DM searches analyzed here. The

most important e↵ects from Higgs physics, instead, come from the Higgs couplings which

are governed by tree-level processes that depend mostly on the value of the CP-odd Higgs

mass : For small values of µ compared to the stop masses, values of mA < 300 GeV would

induce a large mixing between the two CP-even Higgs bosons, leading to a large increase of

the bottom-quark width and therefore to unacceptable small values of the branching ratio

of the decay of the SM-like Higgs boson into gauge bosons [60–62]. The precise constraint

on the CP-odd Higgs mass depends strongly on the observed Higgs production rates. For

instance, the ATLAS experiment sees an enahancement on both the h ! ZZ and h ! ��

production rate and therefore tends to restrict values of the CP-odd Higgs mass smaller

Blind Spot Scenarios and Relic Density

Depends strongly on MA. All other s-particles assumed to be heavy

Well tempered scenario consistent with the proper relic density

Blind Spot
ScenarioCancellation

of Lightest
Higgs coupling
to DM

M1(GeV)

μ(GeV) tanβ = 10,    mA = 400 GeV
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lines show the blind spot calculated from Eq, (19), and the red lines show the traditional blind

spot where m� + µ sin 2� = 0.

studied in this article, and therefore we shall not discuss them further. Similarly, the Higgs

mass is obtained by pushing the stop masses to the order of a few TeV and an appropriate

mixing parameter. Such heavy stops do not a↵ect the DM searches analyzed here. The

most important e↵ects from Higgs physics, instead, come from the Higgs couplings which

are governed by tree-level processes that depend mostly on the value of the CP-odd Higgs

mass : For small values of µ compared to the stop masses, values of mA < 300 GeV would

induce a large mixing between the two CP-even Higgs bosons, leading to a large increase of

the bottom-quark width and therefore to unacceptable small values of the branching ratio

of the decay of the SM-like Higgs boson into gauge bosons [60–62]. The precise constraint

on the CP-odd Higgs mass depends strongly on the observed Higgs production rates. For

instance, the ATLAS experiment sees an enahancement on both the h ! ZZ and h ! ��

production rate and therefore tends to restrict values of the CP-odd Higgs mass smaller

Blind Spot Scenarios and Relic Density

Resonant Annihilation of Dark Matter through MA interchange
This  scenario is consistent with the proper relic density

Blind Spot
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MA is allowed to vary in a small range within the blind spot, so the collider constraints we

later calculated based on a center-valued MA is slightly more strict than actual. We focus

our study on the region 5 < tan � < 15, where our parameter space is left relatively open

by the LHC H ! ⌧⌧ , EWino, and other collider constraints.

Figure. 1: Relic density on M1 � |µ| plane for various tan�. MA is taken to be at the center of blind spot (maximum can-

cellation). Note that µ is always negative for blind spot to occur. Yellow region is consistent with WMAP result. The gray

area in the lower right corner is not shown since the value of blind spot MA is too large (> 3 TeV) or the blind spot is non-

existent. The gray area in the upper side is where the LSP becomes stop rather than neutralino.

MicroOMEGAs (with SuSpect 2.41) is used to calculate the spectrum, SI DDMD cross

sections and corresponding relic densities [19]. The relic density is displayed on the µ�M1

plane in Fig.1 for various tan �, with MA fixed at blind spot. The yellow color indicates
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FIG. 6: Ratio of µ and m� at the blind spot for given values of tan� and mA (see Eq. (21)). The

orange line is the current limit from CMS H,A ! ⌧⌧ searches.

opposite sign. Considering the matrix elements Nij, denoting the i-neutralino composition

on the weak eigenstate j in the Bino, Wino, Higgsino-down, Higgino-up basis, the �̃0
2�̃

0
1Z

coupling is proportional to N13N23�N14N24, so the �̃0
2�̃

0
1Z coupling is suppressed compared

to the �̃0
2�̃

0
1h coupling. Then in the regions of M1 > mh, �̃0

2 decay is dominated by the h +

LSP mode. The trilepton searches should be complemented with searches for Higgs and W

bosons plus missing energy in the final state. Unfortunately, the LHC has a limited reach in

this channel, and tests of this scenario with this channel at the LHC14 will be di�cult for

M1 > 150 GeV [65]. However, for M1 ' O(200 GeV), around 15% of the higgs are boosted,

so we can use the jet substructure techniques to tag the boosted higgs, which appears like

a fat jet at the LHC [66]. This can provide an alternative way of testing this scenario at

LHC14, but a detailed study is lacking and is beyond the scope of this paper.

The region of M1 > mh, and |µ|<⇠ M2 can be also tested by �̃±
1 �̃

0
3 production. �̃0

3 is a
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Branching Ratios and Widths of Non-Standard Higgs Decays into Staus
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FIG. 6: Production rate of �+�� induced by the presence of heavy CP-even and CP-odd scalars,

with mA ⇥ 1 TeV, normalized to the rate obtained in the maximal mixing scenario used by the

CMS collaboration [78].

significantly alleviate the experimental constraints on mA coming from the decay to taus.

However, note that large values of A� > 1 TeV lead to problems with vacuum stability in

this region of parameters.

V. LIGHT STAUS AND HIGGS SEARCHES

Light staus remains the smoking gun signal of the MSSM scenario considered in this

paper. In Ref. [5], we studied the possibility of searching for them in the channel (pp �

�̃� ⇥̃1 � W ⇥ ⇥̄ + 2⇤0) at the LHC using a straight cut and count method. We specifically

analyzed the final state signature consisting of one lepton, 2 hadronic taus and missing

energy. We showed that this is a challenging search channel for both the 8 TeV and the 14

TeV runs, due to low statistics.

Here we will briefly mention another possibility of probing our framework at the LHC.

We note that the final state mentioned above is the same as the one arising in the Higgs

search channel (pp � Wh) followed by (h � ⇥ ⇥̄). Therefore, it is interesting to see whether
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FIG. 5: Left : Branching ratios of the heavy Higgs bosons, H and A. Dashed red lines: BR(A �

�̃1�̃2), solid blue lines: BR(H � �̃1�̃1), solid green lines: BR(H � �̃2�̃2). Right : Total width of the

heavy Higgs bosons in GeV. Mass of the lightest stau is fixed to 95 GeV and mA = 1 TeV.

decay rate into staus. The right panel shows the corresponding increase in the total width

with increasing A� and fixed m�̃2 , which implies a decrease of the branching ratio of the

heavy Higgs decay into � leptons. On the other hand, for a fixed value of A� , the value of

µ increases with m�̃2 , which leads to an increase in �b and a more negative �� . Since the

width of the decay into bottom quarks is the dominant one, this causes the total width to

decrease. However, note that negative �� leads to an increase of the width of the decay

into � leptons, and hence to an increase of the branching ratio of the decay of the heavy,

non-standard Higgs bosons into these particles. On the other hand, the production cross

section of non-standard Higgs bosons is inversely proportional to (1 +�b)2 and hence there

is a compensating e⇥ect on the total rate of these Higgs bosons decaying into taus, Eq. (17).

Fig. 6 shows the variation of the production rate of taus as a function of m�̃2 and A� with

respect to the maximal mixing scenario [53] used by ATLAS and CMS [78]. We use the

same set of parameters as for Fig. 5. For a fixed value of A� , as a result of the compensation

of e⇥ects discussed above, only a small variation of the rate of �� production is observed

in the region of parameters under analysis. On the other hand, for a given value of m�̃2

and increasing values of A� , the �� production rate decreases due to an increase of the

width of the decay into stau leptons. Therefore, only for large values of A� can we hope to
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heavy Higgs bosons in GeV. Mass of the lightest stau is fixed to 95 GeV and mA = 1 TeV.

where the term proportional to (M2
W +M2

Z) is the approximate contribution from the decay

into light charginos and neutralinos. Similar to the case with heavy staus, Eq. (14), the

branching ratio is increased due to negative values of �⇥ and positive values of �b. However,

comparing Eqs. (14) and (17), we see that this increase is partially compensated for by the

stau decays, quantified by the last term in Eq. (17). Let us stress that Eq. (17) is only valid

when the stau, chargino and neutralino masses are much smaller than mA and should be

modified by the appropriate phase space factors if this is not the case.

As before, the production cross section is proportional to the product of the branching

ratio times the bottom Yukawa squared, giving

⇥(pp � (H,A) � ⇤+⇤�) ⇤ m2
b tan

2 �⇧⇤
3
m2

b
m2

�
+

(M2
W+M2

Z)(1+�b)2

m2
� tan2 �

⌅
(1 +�⇥ )2 + (1 +�b)2

�
1 + A2

�

m2
A

⇥⌃ .

(18)

The ⇤⇤ production rate again increases due to negative �⇥ and decreases due to positive

�b. However in addition, there is also a decrease in the rate due to the decays into the light

staus.

Let us now compare the ⇤ branching ratio in the light stau scenario with the one that

is obtained for heavy staus and small values of �b ⇥ 0.25 and �⇥ ⇥ 0, as happens at
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⇥(bb̄A)⇥BR(A! bb̄) ' ⇥(bb̄A)SM
tan2 �

(1 + �b)
2 ⇥

9
(1 + �b)

2 + 9

⇥(bb̄, gg ! A)⇥BR(A! ⇤⇤) ' ⇥(bb̄, gg ! A)SM
tan2 �

(1 + �b)
2 + 9

• Searches at the Tevatron and the LHC are induced by production channels 
associated with the large bottom Yukawa coupling.

• There may be a strong dependence on the parameters in the bb search 
channel, which is strongly reduced in the tau tau mode.

Searches for non-standard Higgs bosons
M. Carena, S. Heinemeyer, G.Weiglein,C.W, EJPC’06

Validity of this approximation confirmed by  NLO computation by D. 
North and M. Spira, arXiv:0808.0087
Further work by Mhulleitner, Rzehak and Spira, 0812.3815

Tuesday, November 19, 2013

Below*the*top*threshold*or*at*moderate*or*large*tanβ*(last*term*associated*with*light*staus)*:*

�(pp ! H,A ! ⌧⌧) / tan2 �h⇣
3
m2

b
m2

⌧
+

(M2
W+M2

Z)(1+�b)2

m2
⌧ tan2 �

⌘
(1 +�⌧ )

2 + (1 +�b)
2
i

•  If charginos are light, they contribute to the total with, suppressing the BR.



15

Figure 5 shows the expected and observed exclusion limits at the 95% CL in the mmax
h scenario

and the modified scenarios mmod+
h and mmod�

h . The allowed regions where the mass of the
MSSM scalar Higgs boson h or H is compatible with the mass of the recently discovered boson
of 125 GeV within a range of ±3 GeV are delimited by the hatched areas. Most of the MSSM
parameter space is excluded by the Higgs boson mass requirement in the mmax

h scenario, while
in the modified scenarios the exclusion is mainly concentrated at low tan b values.
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Figure 5: Expected and observed exclusion limits at 95% CL in the mA-tan b parameter space
for the MSSM mmax

h , mmod+
h and mmod�

h benchmark scenarios, are shown as shaded areas. The
allowed regions where the mass of the MSSM scalar Higgs boson h or H is compatible with the
mass of the recently discovered boson of 125 GeV within a range of ±3 GeV are delimited by
the hatched areas. A test of the compatibility of the data to a signal of the three neutral Higgs
bosons h, H and A compared to a SM Higgs boson hypothesis is performed.

Search for new neutral Higgs bosons

Low values of the new Higgs bosons masses
and large values of tanβ ruled out
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A. H ! ⌧⌧ Search

We consider production of the heavy Higgses H and A (either of which is denoted �) by

means of gluon-gluon fusion (gg�) and b-associated production (bb�), followed by a decay

into two ⌧ leptons. Recent reports from CMS and ATLAS [10, 20] provide 2-dimensional

95% CL upper limits on �(gg�)⇥BR(� ! ⌧⌧) (CMS) and �tot (ATLAS) with respect to m�

and �(bb�)⇥ BR(� ! ⌧⌧) (CMS) or fb = �(bb�)/�tot. Their bounds are given for discrete

mA (and discrete fb for ATLAS), so we linearly interpolate to find bounds at arbitrary

values. While the CMS and ATLAS bounds consider the production and decay of either

H or A, these processes are experimentally indistinguishable since mA ' mH in our model,

so we sum the cross sections (or cross section times branching ratio) and compare these

summed values to the experimental limits. We use FeynHiggs 2.12.0 [22–27] to compute the

relevant cross sections and branching ratios for points in the blind spot scenario.

Linear approximations are made for M1 as a function of |µ| in the well-tempered and

A-funnel branches, based o↵ of Fig. 1. Cross sections and branching ratios are computed at

points along these approximations (with mA chosen to be at the center of the blind spot)

and are then checked against the bounds in the ATLAS and CMS reports described above.

A plot of the excluded regions in the tan� �mA plane are shown in Fig. 2.

Figure. 2: Exclusion status of the well-tempered region and the A-funnel region in tan � �MA plane, with the well-tempered

region represented in the left plot and the A-funnel region in the right plot. The colored regions are 95% excluded by AT-

LAS or CMS results. The dark gray regions are not attained in the blind spot scenario.

We see that at tan � = 6 the well-tempered region begins to be excluded, and for tan � � 7

Limits from Direct Searches in the two different Blind Spot Regions

Well 
Tempered
Neutralino

Resonant Annihilation

Roglans, Spiegel, Sun, Huang, C.W.’16
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Figure. 6: Leading order cross sections for various electroweakino pair productions. Each data point corresponds to a blind

spot with small M1 and |µ| that was not excluded by the � ! ⌧⌧ searches, although one outlier is not shown for the sake

of readability. The plot incorporates points from all values of tan�, since tan� does not have a significant e↵ect on �. For

these data points M1 ' |µ|, and changes in the sign of M1 � |µ| can occur between data points. Thus the composition

of the electroweakinos changes between data points as well. This results in bumps in the depicted curves since bino-like

electroweakinos have lower cross sections than if they were higgsino-like.

to the Higgs is about 15% higher than the SM, which corresponds to 1� of the experimental

uncertainty. The signal strength in other channels are about 25% lower than the SM value,

and there are about 1.5� tension in the �� and WW channels.

VI Conclusions

n this article we have study the constraints and future probe of the blind spot scenario

within the MSSM. We have shown that the proper relic density may be obtained in both

the well tempered neutralino region as well as in the A-funnel region. In the well tempered

region, the values of the heavy Higgs boson masses are lower than twice the top quark

mass and this region of parameters may be e�ciently probed by searches for production of

heavy Higgs bosons decaying into ⌧ -lepton pairs. Current searches already restrict the value

of tan � < 6 in this region of parameters and future searches can probe the whole region

consistent with the blind spot scenario.

Production of Charginos and Neutralinos
at the 13 TeV Collider

Roglans, Spiegel, Sun, Huang, C.W.’16

Sizable cross sections



Searches for Charginos and Neutralinos

Trilepton Channel

For heavy sleptons, the bounds are weak, due to
Branching Ratio suppression
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Figure. 3: Net exclusion status of the well-tempered region and the A-funnel region. Each data point represents a blind

spot with the proper relic density. Data points are first checked for exclusion by CMS, then by ATLAS, then by the CMS

electroweakino searches (see the following section), with the color-coding of each data point corresponding to the method by

which it is first excluded. Values of mA are labeled next to the selected data points. The sparseness of points in the A-funnel

region reflects its narrowness relative to the well-tempered region, as seen in Fig. 1.

at LHC become relevant. These searches tend to look for the decay products of e�0
2e�±

1

pair production. Since our slepton masses have been set high, and mA is greater than

2me�0
2
' 2me�±

1
, the branching ratios for the decays into sleptons, and the heavy Higgs must

be negligible. This leaves e�0
2e�±

1 ! WZe�0
1e�0

1 as the only viable decay channel. Given this

decay channel, CMS puts upper bounds at the 95% confidence level on the pair production

cross section �(e�0
2e�±

1 ) with respect to me�0
1
and me�0

2
, which is assumed to be degenerate with

me�±
1
[21]. How this electroweakino production mode compares to others is shown in Fig. 6.

Prospino2 [how to cite prospino?] is used to compute pair production cross sections for our

data.

In the region of small M1 and |µ|, the masses of e�0
2 and e�0

3 are close, and thus the decays

Bounds on the Blind Spot Scenarios
coming from Direct Searches for Higgs and Electroweakinos

Values of
mAResonant 

Annihilation

Well 
tempered
neutralino
(excluded)

Roglans, Spiegel, Sun, Huang, C.W.’16
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Comments

• Previous plot was performed for values of the Higgs mass 
consistent with approximate cancellation of the direct DM 
detection cross section

• We can instead choose the maximal mass consistent with a given 
cross section, that we chose to be � ' 10�11 pb
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FIG. 2: SI scattering cross section as a function of mA for tan� = 50 (up left), tan� = 30 (up

right) and tan� = 10 (down left), µ ⇠ �2M1 and tan� = 30, µ ⇠ �4M1 (down right). The red

dots are for the µ > 0 case, and blue dots are for µ < 0 case. The green shaded area are excluded by

the CMS H,A ! ⌧⌧ searches. The orange line is the LUX limit, and the blue line is the projected

Xenon 1T limit

.

is enhanced by tan �, but since µ grows together with tan �, the down-Higgsino component

is suppressed roughly by tan �. At large mA, the cross section approaches 10�13 pb�1, which

is below the atmospheric and di↵use supernova neutrino backgrounds. There are various

contributions to this asymptotic value, including squarks, incomplete cancellation of the

couplings and loop e↵ects.

We also analyze the relic density. Considering a thermally produced neutralino DM, the

annihilation cross section is too small for Bino-like DM, which leads to DM density over

abundance, while the annihilation is too e�cient for pure wino or Higgsino-like DM, which

results in under abundance unless the LSP is heavier than 1 TeV [41, 42] or 2.7 TeV [42, 43],
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Figure. 5: Plot analogous to Fig. 3 with mA chosen at the upper limit allowed by the blind spot. Only exclusions from the

CMS � ! ⌧⌧ search are shown.

Higgs data. At the tree level, the 125 GeV Higgs coupling to botto in MSSM is

ghbb
gSMhbb

= � sin↵

cos �
= sin(� � ↵)� tan � cos(� � ↵). (3)

In the well-tempered region, when tan � is about 5, and the lightest neutralino is about

600 GeV, mA is about 220 GeV as shown in Fig. 3, which leads to a mixing angle ↵

about -0.27. Then the bottom coupling is about 30% higher than the SM value, which is

about 2� of the current experimental uncertainty. The enhancement in the bottom coupling

would lead to a suppression in the branching ratios in all decay channels. When mA is about

220 GeV, the signal strength for other channels l would be about 40% lower than the SM

value, which corresponds to about 2� of the experimental uncertainties in the �� and WW

channels. Other channels have a similar suppression, but the experimental uncertainties are

larger. In the region where mA is larger, as approaching the decoupling limit, this tension is

eased. For examples, when tan � is about 5, and mA is about 300 GeV, the bottom coupling

Bounds on the Blind Spot Scenarios
coming from Direct Searches for Higgs and Electroweakinos

Well tempered region allowed for moderate values of
tanβ, but only for low values of the CP-odd Higgs mass

Well 
tempered
neutralino

Resonant 
Annihilation

(  Highest CP-odd Higgs mass consistent with a cross section                                   ) � < 10�47 cm2

Roglans, Spiegel, Sun, Huang, C.W.’16



Bottom Coupling

Figure 1: Dependence of Higgs signal rates on cot (� � ↵) for tan � = 1 (left) and 2 (right) in

type-II 2HDM.

that depend on the SM couplings and may receive contributions from New Physics. Formulae

for Rj
i as a function of these couplings are given in the Appendix.

In the type-II 2HDM the couplings (normalised to SM) read:

ct =
cos↵

sin �
= sin (� � ↵) + cot � cos (� � ↵) , (4)

cb = � sin↵

cos �
= sin (� � ↵)� tan � cos (� � ↵) , (5)

cV = sin (� � ↵) , (6)

The SM couplings are obtained in the decoupling limit ↵ = � � ⇡/2. It is clear from the

above formulae that significant deviations from the SM for the tth production cross-section can

only occur for small values of tan � and away from the decoupling limit. It is important to

note the anti-correllation between ct and cb. If one is enhanced, the other one is suppressed

and vice-versa. Moreover, for tan � > 1 the bottom Yukawa coupling deviates from the SM

more than the top quark Yukawa. This is particularly important since the bottom Yukawa

coupling controls to large extent the total decay width of the Higgs because the SM Higgs

branching ratio to bottom and tau pairs exceeds in total 60%. Therefore, all the branching

ratios strongly deviate from the SM prediction if cb strongly deviates from cV . Since the LHC

Higgs measurements are close to the SM predictions this puts strong constraint on possible

deviations of ct from one.

The dependence of �tth and other rates on cot (� � ↵) for tan � = 1 and 2 is shown in Fig. 1.

Due to the observed excess in µtth
WW , it is particularly interesting to investigate predictions for

Rtth
V V , where V = W or Z. It can be seen from eqs. (4)-(5) that in type-II 2HDM Rtth

V V can be

enhanced only for cot (� � ↵) > 0. As is shown in Fig. 1, in such a case, both the tth production

cross-section and the branching ratio to WW is enhanced. However, a large enhancement of
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FIG. 1: One-loop diagrams contributing to the the coe�cient, Z
6

, of the Higgs basis operator,

(H†
1

H
1

)(H†
1

H
2

). Using the interaction Lagrangian given in Eq. (51), one sees that the parametric

dependence for the six diagrams are: h4t s
3

�c�X
3

t Yt for (a) and (b); h4t s
3

�c�X
2

t for (c) and (d); and

h4t s
3

�c�XtYt for (e) and (f).

where we have used Eq. (46) to write v2s4�h
4

t = 4m4

t/v
2. Using Eqs. (55) and (56) in the

evaluation of Eq. (30) yields

t� c��↵ ' �1

m2

H �m2

h



m2

h +m2

Z +
3m4
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. (57)

At large t� we have Xt(Yt�Xt) ' µ(Att� �µ) and X3

t (Yt�Xt) ' µA2

t (Att� � 3µ), in which

case, Eq. (57) can be rewritten in the following approximate form,
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H �m2

h
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3m4
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◆��

.

(58)
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In the MSSM, one can compute this deviations 

Carena, Haber, Low, Shah, C.W.’15

In general, there is an enhancement of the bottom coupling

May only be avoided for large values of the heavy Higgs mass
(μ is relatively small and radiative corrections are then negligible)
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FIG. 2: Ratio of the value of the down-type fermion couplings to Higgs bosons to their SM values

in the case of low µ (L1j ⇥ 0), as obtained from Eq. (96), and �d ⌅ 0.

We can reach the same conclusion by using Eq. (21) for s� in this regime,
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which, for mA
>� 2mh and moderate t⇥ implies

� s�
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⌅ m2
A +m2

Z

m2
A �m2

h

. (97)

This clearly demonstrates that in this case the deviation of (�s�/c⇥) from 1 depends only on

mA and is independent of t⇥. In other words, alignment is only achieved in the decoupling

limit, m2
A ⇤ m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit via

decoupling, Eq. (77). In this regime �5,6,7 are very small implying

B ⌅ m2
A �m2

h, and B �A ⌅ �(m2
Z +m2

h) . (98)

In Fig. 2 we display the value of �s�/c⇥ in the mA � tan⇥ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, Eq. (96). As

expected from our discussion above, the down-type fermion couplings to the Higgs become
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Down Couplings in the MSSM for low values of µ

All vector boson branching
ratios suppressed by enhancement

of the bottom decay width

�6,7 ' 0

H1

H1

Q̃

Q̃

Ũ Ũ
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Ũ

Ũ
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FIG. 1: One-loop diagrams contributing to the the coefficient, Z6, of the Higgs basis operator,

(H†
1H1)(H

†
1H2). Using the interaction Lagrangian given in Eq. (51), one sees that the parametric

dependence for the six diagrams are: h4t s
3
βcβX

3
t Yt for (a) and (b); h4t s

3
βcβX

2
t for (c) and (d); and

h4t s
3
βcβXtYt for (e) and (f).

where we have used Eq. (46) to write v2s4βh
4
t = 4m4

t/v
2. Using Eqs. (55) and (56) in the

evaluation of Eq. (30) yields
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At large tβ we have Xt(Yt−Xt) ≃ µ(Attβ −µ) and X3
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t (Attβ − 3µ), in which

case, Eq. (57) can be rewritten in the following approximate form,
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For moderate or large values of tanβ

(no Alignment)
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Figure 5: Regions of the (mA, tan �) plane excluded in a simplified MSSM model via fits to the measured
rates of Higgs boson production and decays. The likelihood contours where �2 ln⇤ = 6.0, corresponding
approximately to 95% CL (2�), are indicated for the data and expectation assuming the SM Higgs sector.
The light shaded and hashed regions indicate the observed and expected exclusions, respectively. The
SM decoupling limit is mA ! 1.

for 2  tan �  10, with the limit increasing to larger masses for tan � < 2. The observed limit is
stronger than expected since the measured rates in the h ! �� (expected to be dominated by a W boson
loop) and h ! ZZ⇤ ! 4` channels are higher than predicted by the SM, but the simplified MSSM
has a physical boundary V  1 so the vector boson coupling cannot be larger than the SM value. The
physical boundary is accounted for by computing the profile likelihood ratio with respect to the maximum
likelihood obtained within the physical region of the parameter space, mA >0 and tan � >0. The range
0 tan � 10 is shown as only that part of the parameter space was scanned in the present version of this
analysis. The compatible region extends to larger tan � values.

The results reported here pertain to the simplified MSSM model studied and are not fully general.
The MSSM includes other possibilities such as Higgs boson decays to supersymmetric particles, decays
of heavy Higgs bosons to lighter ones, and e↵ects from light supersymmetric particles [60] which are
not investigated here.

8 Higgs Portal to Dark Matter

Many “Higgs portal” models [14,34,61–65] introduce an additional weakly-interacting massive particle
(WIMP) as a dark matter candidate. It is assumed to interact very weakly with the SM particles, except
for the Higgs boson. In this study, the coupling of the Higgs boson to the WIMP is taken to be a free
parameter.

The upper limit on the branching ratio of the Higgs boson to invisible final states, BRi, is derived
using the combination of rate measurements from the h ! ��, h ! ZZ⇤ ! 4`, h ! WW⇤ ! `⌫`⌫,
h! ⌧⌧, and h! bb̄ channels, together with the measured upper limit on the rate of the Zh! ``+ Emiss

T
process. The couplings of the Higgs boson to massive particles other than the WIMP are assumed to be
equal to the SM predictions, allowing the corresponding partial decay widths and invisible decay width

Low values of µ similar to the ones analyzed by ATLAS

ATLAS-CONF-2014-010

Bounds coming from precision h measurements

In the MSSM well tempered scenario ruled out.



Adding a heavy singlet sector:                                             
CP-even Higgs Mixing in the NMSSM

• It is well known that in the NMSSM there are new contributions to the lightest CP-
even Higgs mass,

• It is perhaps less known that it leads to sizable corrections to the mixing between the 
MSSM like CP-even states. In the Higgs basis, 

• The last term is the one appearing in the MSSM, that are small for moderate mixing and 
small values of            .  The corrections Δt and δt are the same as in the MSSM. 

• So, alignment leads to a determination of lambda,

• The values of lambda end up in a very narrow range, between 0.65 and 0.7 for all values 
of tanβ, that are the values that lead to naturalness with perturbative consistency  up to 
the GUT scale
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see also Kang, Li, Li,Liu, Shu’13,   Agashe,Cui,Franceschini’13
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FIG. 8: Blue shaded region denotes current LHC limits. The ratio of the Higgs coupling to down-

type quarks to the SM limit is shown by the red dashed contours for various values of �.
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It is clear from these plots that
the NMSSM does an amazing job 

in restoring the  SM-like 
properties of the Higgs, provided  

λ is about 0.65.

Similar values of λ are needed
to obtain the proper Higgs

mass without the presence of
heavy superpartners of the

top quarks. 

Well tempered scenario may be
realized in such an extension

Carena, Low, Shah, C.W.’13



Prospects for Direct Higgs Searches at the LHC
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Figure 14: Projections for the LHC with
p
s = 14 TeV and 300 fb�1 data for the 2� sensitivity in

the hMSSM [tan�,MA] plane from the search for A/H± states in their fermionic decays (left) and
A/H states in their bosonic decays (right). The same color code as at

p
s=8 TeV has been used

and, for the fermionic channels, we add a constraint from the H+ ! tb mode depicted in dark blue.
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Figure 15: Projections for the LHC with
p
s = 14 TeV and 300 fb�1 data for the 2� sensitivity

in the hMSSM [tan�,MA] plane when the searches for the A/H/H± states in their fermionic and
bosonic decays are combined.

Nevertheless, there will remain an area of the hMSSM parameter space, at tan� <⇠ 4

and masses above MA ⇡ 400 GeV to name it, which will not be accessible by the channels

that have been considered so far in the search of the heavier H/A and H± states. To probe

this area, the high luminosity option of the LHC with L = 3 ab�1 data or a higher energy

pp collider, such as the presently discussed Fcc–pp at
p
s ⇡ 100 TeV will be necessary.

However, as it was discussed in many instances in this paper, this virgin area is the ideal

territory to perform searches in the gg ! H/A ! tt̄ channel to which we turn our attention

now.

– 34 –

Well tempered region fully explored

Resonant Annihilation will be explored until fairly large value of |μ|

Djouadi et al’15



Conclusions 

• Provided R-Parity is conserved, Supersymmetric extensions of the Standard Model 
contain a Dark Matter candidate.

• Such Dark Matter particle have been searched for at Direct Detection 
experiments, as well as at colliders.

• Direct Dark Matter constraints are increasingly strong and rule out relevant 
regions of parameter space.

• Blind spots occur in regions in which the Higgs mediated amplitudes interfere 
destructively, rendering the Direct Dark Matter cross section consistent with 
current experiments.

• The realization of these blind spots demand correlations between the ratio of the 
square of the Higgs masses and the ratio of the gaugino and Higgsino masses.

• These correlations may be tested at the LHC through a combination of 
electroweakino and non-standard Higgs searches, which have already tested 
important regions of the allowed parameter space and will test the most natural 
realization of this scenario in the real future.


