#### The Self-Interacting Dark Matter Paradigm

#### Hai-Bo Yu University of California, Riverside





### Cold Dark Matter

• Large scales: very well



• Small scales (dwarf galaxies, sub-halos, galaxy clusters): ?





### Core VS. Cusp Problem

• DM-dominated systems (dwarfs, LSBs) from THINGS Oh+(2011)



Flores, Primack (1994), Moore (1994), Persic+(1996), de Naray+(2008), de Blok+(2008), Oh+(2011,2015)...

### Even Galaxy Clusters

• Seven well-resolved galaxy clusters



• CDM halos are too massive in their inner regions

#### • Violent baryonic feedback process



#### • Violent baryonic feedback process



 $\boldsymbol{\alpha}$  is a function of the halo mass and stellar mass

Governato+ (2012) Di Cintio+(2014)

• Consistency with the prediction from ΛCDM cosmology?



Pace (2016)



Depends on the recipe of hydrodynamical simulations!

EAGLE simulations did not see any effect at all (the NFW group)

#### We are still debating!

Oman+ (2015)

### **Dark Matter Physics**

• Self-interactions can reduce the central DM density





#### Radius from the dark matter halo center

$$\sigma/m_{X} \sim 1 \text{ cm}^{2}/\text{g}$$
 for v  $\sim 40-100 \text{ km/s}$ 

$$\Gamma \simeq n\sigma v = (\rho/m_X)\sigma v \sim H_0$$

Challenges

• A really large scattering cross section!

 $\sigma \sim 1 \text{ cm}^2 (\text{m}_X/\text{g}) \sim 2 \times 10^{-24} \text{ cm}^2 (\text{m}_X/\text{GeV})$ 

For a WIMP:  $\sigma \sim 10^{-38} \text{ cm}^2 (m_X/100 \text{ GeV})$ 

SIDM indicates a new mass scale

• How to avoid the constraints on large scales?

 $\sigma/m_X < 2 \text{ cm}^2/\text{g}$  for 3000 km/s (Bullet cluster) Robertson+(2016)  $\sigma/m_X < 0.1 \text{ cm}^2/\text{g}$  for 1500 km/s (stellar kinematics)

In particular, if  $\sigma$ ~constant



a nuclear-scale cross section

Kaplinghat, Tulin, HBY (2015)

### **SIDM Particle Physics**



#### SIDM indicates light mediators

$$\sigma \approx 5 \times 10^{-23} \,\mathrm{cm}^2 \left(\frac{\alpha_X}{0.01}\right)^2 \left(\frac{m_X}{10 \,\mathrm{GeV}}\right)^2 \left(\frac{10 \,\mathrm{MeV}}{m_\phi}\right)^4$$

in the perturbative and small velocity limit

• With a light mediator, DM self-scattering is velocity-dependent



Feng, Kaplinghat, HBY (2009); Buckley, Fox (2009); Loeb, Weiner (2010); Tulin, HBY, Zurek (2012) (2013)

### The SIDM Paradigm

#### • The SIDM paradigm is predictive



#### **SIDM Direct Detection**

• Characteristic signal spectrum



Del Nobile, Kaplinghat, HBY (JCAP 2015)

### **SIDM Indirect Detection**

• Lighting up the galactic center, but not dwarf galaxies!



Kaplinghat, Linden, HBY (PRL 2015)

#### SIDM at Colliders

#### • Striking collider signals



pp→Monojet+Missing Energy



An, Echenard, Pospelov, Zhang (PRL 2015)

Tsai, Wang, Zhao (PRD 2015)

Shepherd, Tait, Zaharijas (PRD 2009)

Focus on smoking-gun signals, independent of DM-SM interactions

### Ideal: Halo Morphology

• SIDM halos are more spherically symmetric than CDM ones



Peter+(2013)

## Tying SIDM to Baryons

#### • SIDM may follow the stellar distribution; halo morphology

z (kpc)



Maxwell distribution



4

R (kpc)

2

SIDM density contour

Correlation between the stellar distribution and the SIDM distribution

Kaplinghat, Linden, Keeley, HBY (PRL 2014)

6

8

### Backreaction of Stellar Disk

#### • Spirals with only the stellar disk



- Stellar disk could compress the SIDM halo profile
- The SIDM halo could be diverse, depending on the baryon concentration

Kamada, Kaplinghat, Pace, HBY (in prep)

## Tying SIDM to Baryons

#### Confirmed by simulations

| CDM Only  | CDM, Fiducial Disk  | CDM, Compact Disk  | - | $10^1$                              |
|-----------|---------------------|--------------------|---|-------------------------------------|
| 5 kpc     |                     |                    | - | $M_{\odot}   { m pc}^{-3} )$        |
| SIDM Only | SIDM, Fiducial Disk | SIDM, Compact Disk |   | ${ m Density} \left( { m I}  ight)$ |
|           |                     |                    |   | $10^{-2}$                           |

Elbert+ (2016)

### Idea II: Dark Acoustic Oscillation

• Roles of dark radiation, damped SIDM power spectrum



### Idea III: Dark Matter "Colliders"

#### Dwarf galaxies



"B-factory" (v~30 km/s)

Observations on all scales

#### MW-size galaxies



"LEP" (v~200 km/s) Self-scattering kinematics Clusters



"LHC" (v~1000 km/s)

Measure particle physics parameters  $\sigma_X, m_X, g_X$ 

### Modelling SIDM Halos

#### • An analytical model based on simulations



rate × time 
$$\approx \frac{\langle \sigma v \rangle}{m} \rho(r_1) t_{\text{age}} \approx 1$$

$$ho(r) = \left\{ egin{array}{cc} 
ho_{
m iso}(r)\,, & r < r_1 \ 
ho_{
m NFW}(r)\,, & r > r_1 \end{array} 
ight.$$

#### Matching conditions:

$$\rho_{\rm iso}(r_1) = \rho_{\rm NFW}(r_1)$$
$$M_{\rm iso}(r_1) = M_{\rm NFW}(r_1)$$

## Modelling SIDM Halos

• This method works remarkably well



### SIDM From Dwarfs to Clusters

- Consider 5 THINGS dwarfs (red), 7 LSBs (blue), 6 galaxy clusters (green)
- 8 simulated halos with  $\sigma/m=1 \text{ cm}^2/\text{g}$  (gray) for calibration



Galaxies:  $\sim I - 2 \text{ cm}^2/\text{g}$ Clusters:  $\sim 0.1 \text{ cm}^2/\text{g}$ 

Bullet Cluster: < I cm<sup>2</sup>/g

Kaplinghat, Tulin, HBY (PRL 2015)

### Measuring Dark Matter Mass

• Self-scattering kinematics determines SIDM mass



#### More Galaxies...



SIDM is doing systematically better than CDM in explaining rotation curves of spiral galaxies

## The Diversity Problem

• Rotation curves of spirals are diverse



# The Diversity Problem



EAGLE simulations (the NFW group) Oman+ (2015)

# SIDM+Baryons

#### Solving the diversity problem with SIDM



- self-interactions generate cores
- scatter in halo concentration
- baryon distribution
- baryon compression effect on the SIDM halo

Kamada, Kaplinghat, Pace, HBY (in prep)

## Very Massive Spirals



400 UGC 2841,  $c_{200}$ :median,  $M_{200}$ :4.4×10<sup>12</sup> $M_{\odot}$ 300 V<sub>cir</sub> (km/s) 200 100 0 10 20 30 40 50 60 70 0 Radius (kpc)

Naturally explain "disk-halo conspiracy" SIDM particles follow isothermal distribution together with baryons, and the total density scales as 1/r<sup>2</sup>

Kamada, Kaplinghat, Pace, HBY (in prep)



Confirmed by SIDM simulations with baryons (not due to the feedback process)

Creasey, Sameie, Sales, HBY, Zavala, Vogelsberger (in prep)

## Summary

- It is time to think about new approaches to the dark matter problem
- CDM may break down on galactic scales
- The SIDM paradigm provides a solution with interesting features
  - Smoking-gun signatures in direct and indirect detection experiments
  - Measure dark matter mass via self-scattering kinematics
  - Tie dark matter to baryons
  - Damped power spectrum
- With SIDM, we may address more general problems in galaxy formation