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ONCE UPON A TIME A SM HIGGS WAS DISCOVERED .. ..
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ONCE UPON A TIME A SM HIGGS WAS DISCOVERED .. ..

> ... that, however, apparently had no Cosmological Implications

» The Universe was deemed to be “Stable Enough”

SM

130 B .
* Compute Lee-Weinberg bounce

10 -~

my (GeV)

p = maxpa[Vuh® exp (=877 /3|A(R)])]

[~
110 ¢

100 - R unstable |
| HHHM'/l | LA | \u—\ml/\ RN RN RN [ A [ Ll
10° 107 108 10° 101 10'' 102 10" 10 10b
A (GeV)

Cheung, Papucci, KZ 2012




BUT THE TALE CHANGES IN INFLATION ...

» During Inflation Higgs Experiences Same Quantum
Fluctuations as the Inflaton
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» Implies a potentially dark side for our Universe: a fluctuation
can sample unstable part of potential during inflation

» Let us take a close look at this: assume a SM Higgs boson
with no gravitational stabilizing corrections



BUT THE TALE CHANGES IN INFLATION ...

» During Inflation Higgs Experiences Same Quantum
Fluctuations as the Inflaton
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» Story is about this “just right” Higgs in an inflating Universe
that becomes like ours.

1. The storyline — how does a fluctuation evolve?

2. The ending — how does the spacetime react?



A MODEL — STATISTICAL

» How to Describe the Fluctuation Evolution?

» Probabilistic Evolution: Fokker-Planck Equation

orP 0 _V’(5h)P - H? oP
B - 8m2O6h
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see, e.g., Starobinsky and Yokoyama

: L : astro-ph/0407016
» In absence of potential, obtain diffusion P

applied to Higgs: Espinosa,

H*N Giudice, Riotto ‘07
OR* () = =5

» Scales like # of e-folds




INFLATION & HORIZONS
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A MODEL — STATISTICAL

» During Inflatioh Higgs Experiences Same Quantum
Fluctuationg’as the Inflaton




INFLATION AND HORIZONS

» Average fluctuation in an
inflationary patch (H~Y is sum
over super horizon modes

» Higgs undergoes random walk
within patch with each
subsequent mode crossing
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STATISTICAL MODEL FROM RIGGS EOM

Hartree-Fock
(Gaussian)
approximation

See Kearney, Yoo,

KZ 1503.05193
for more details
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PERPLEXITIES

» When is a statistical treatment appropriate?

Hook, Kearney, Shakya, KZ 1404.5953

» Whatis V(h)?

Kearney, Yoo, KZ 1503.05193

» What is the response of the spacetime to sampling of the
unstable potential? When is the sampling problematic for a
Universe like ours?

East, Kearney, Yoo, KZ 1607.00381



FIELD EXCURSIUNS Hook, Kearney, Shakya, KZ 1404.5953
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» When is a Statistical Treatment Appropriate?
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FIELD EXCURSIONS Hook, Kearney, Shakya, KZ 1404.5953

» Smallest Excursions Rarest Transitions
(Coleman-DeLuccia) H? < Vg (Amax)

» Moderate Excursions Rare Transitions
(Hawking-Moss) Vi (M) © H2 S (Vi (M)

» Big Excursions Not Rare Transitions

(Fokker-Planck) H > (Vi (Ao )) /4



FIELD EXCURSIONS Hook, Kearney, Shakya, KZ 1404.5953

» Smallest Excursions Rarest Transitions
(Coleman-DeLuccia) H? < Vi (Aax)

» Moderate Excursions Rare Transitions
(Hawking-Moss) Vit (Ama) S H S (Vegt (Anax))?

> Big Excursions e[ ] Not Rare Transitions
(Fokker-Planck) H 2 (Vest (Amax)) '/

“Single bounce limit of Fokker-Planck solution”



FIELD EXCURSIONS Kearney, Yoo, KZ 1503.05193

» Large excursions (into unstable part of potential) do not signal
the end of inflation

> As long as statistical fluctuations dominate over potential,
diffusion continues with inflation undisturbed

» Rare fluctuations do not end inflation globally

d, oy 2\, o H
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Divergence occurs when Nuax =




WHAT IS V(H)? Kearney, Yoo, KZ 1503.05193

» Effective potential evaluated at © = dh typically employed

» Not immediately clear exactly what this means as effective
potential away from extrema is unphysical

» However, in quasi-conformal regime, may not have a big
impact on the result
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WHAT IS V(H)? WILSONIAN EFT Kearney, Yoo, KZ 1503.05193

» SM fields come in active and passive
1. Passive modes decay outside the horizon; active grow
» Fermions & gauge bosons = passive; scalars = active
(Woodard and collaborators)
2. Equations describe evolution of super-horizon modes

» Potential is the RG-improved Higgs potential

3. Fermions and gauge bosons are active on sub-horizon scales

» Renormalize coupling as in Minkowski space



WHAT IS V(H)? WILSONIAN EFT Kearney, Yoo, KZ 1503.05193

» Prescription: run SM down from UV as in Minkowski space,
integrating out passive states where the mode functions
become suppressed

V(h) = iAh‘l with A (u ~ /H? + h2)

» Consistency:

® h < H : fermions and gauge bosons decouple at horizon
scale, h ~ H

® h > H :fermions and gauge bosons decouple at “mass
threshold,” m¢ = y+h, my = gh

Verified by explicit calculation in Herranen et al 1407.3141



CUNSISTENCY CHECK INFRARED LUGS Kearney, Yoo, KZ 1503.05193
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> Calculate divergence of (§h*) utilizing in-in formalism
(e.g. Weinberg, hep-th/0506236)
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CONSISTENCY CHECK INFRARED LUGS Kearney, Yoo, KZ 1503.05193
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> Calculate divergence of (§h*) utilizing in-in formalism
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CUNSISTENCY CHECK INFRARED LUGS Kearney, Yoo, KZ 1503.05193
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> Calculate divergence of (§h*) utilizing in-in formalism
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CONSISTENCY CHECK INFRARED LUGS Kearney, Yoo, KZ 1503.05193
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> Calculate divergence of (§h*) utilizing in-in formalism
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A CUNSISTENT STO RY Kearney, Yoo, KZ 1503.05193

» Equivalent to expansion of

1 H? X
v/ =2\ 21

with coupling renormalized at u ~ H

(0R*(t)) =




IMPLICATION FOR THE END OF THE STORY — OUR UNIVERSE?

» Depends on whether a patch falling to the true vacuum
expands outwards, or not

» If patch expands outwards, then a single patch in the past
light cone is disastrous; so need e>° good patches

Tails are important!
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DUES A BAD PATCH EXPAND? East, Kearney, Yoo, KZ 1607.00381

» Normal intuition is that a true vacuum expands outwards

» Here, though, the true vacuum is crunching; also potential

AV (h) [x10%]

energy from potential is liberated as the field enters the true
vacuum

No thin wall bubble nucleation
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treated with thin wall: Espinosa et al. 1505.04825



DUES A BAD PATCH EXPAND? East, Kearney, Yoo, KZ 1607.00381

» Normal intuition is that a true vacuum expands outwards

» Here, though, the true vacuum is crunching; also potential

AV (h) [x10%]

energy from potential is liberated as the field enters the true
vacuum

No thin wall bubble nucleation
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Rin defined by point where classical motion dominates over diffusion



DUES A BAD PATCH EXPAND? East, Kearney, Yoo, KZ 1607.00381




DOES A BAD PATCH EXPAND? East, Kearney, Yoo, KZ 1607.00381
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NON'SPHERICAL CUNFIGURATIONS East, Kearney, Yoo, KZ 1607.00381

» Black Holes and the Hoop Conjecture

» Region of mass M will create black hole ift a “hoop” of
circumf. 4w M can be passed over region in every direction

» Manifestly violated here
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A TECHNICAL SIDE STORY East, Kearney, Yoo, KZ 1607.00381
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Need to resolve tails of distribution to obtain correct constraint
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IMPLICATIONS FOR OUR UNIVERSE East, Kearney, Yoo, KZ 1607.0038]

If one observes primordial B-modes either
(a) the Higgs has stabilizing corrections, or
(b) the top mass must come down
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WHAT HAVE WE LEARNED?

» The presence of a SM Higgs boson vacuum instability
provides an ideal laboratory for considering novel aspects of
scalar field evolution in inflation

» single vs multi-bounce (HM vs FP)

> interacting field in an inflating background; scale and gauge
dependence

» evolution of AdS bubble with thick wall
> test of Hoop conjecture

> observation of primordial B-modes may tell us something about the
nature of the Higgs potential at large field values



