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ONCE UPON A TIME A SM HIGGS WAS DISCOVERED ….

➤ … and it was found to have a vacuum instability 
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The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson
masses in the minimal standard model, our vacuum is instead metastable with a lifetime exceeding
the present age of the Universe. It has been suggested that a metastable vacuum is generally ruled
out because high-energy cosmic-ray collisions would have long ago induced its decay. I argue that
the reasoning for this conclusion is erroneous. As a consequence, upper bounds on the top-quark
mass derived from stability arguments are relaxed. Also presented is an analytic method for accu-
rately approximating the lifetime of the vacuum from the effective potential without solving for the
O(4) bounce solution numerically.

I. INTRODUCTION

In Weinberg-Salam theory, the weak gauge group is
broken by a Higgs sector whose renormalizable potential
is of the form

v(y) =——'p lp +—'A,y
This potential receives radiative corrections and the vac-
uum expectation of P is determined by the effective po-
tential which includes these corrections. One-loop
corrections from bosons, such as the Higgs boson, give
contributions of the form A, P 1ng times numerical fac-
tors. These corrections dominate the usual XP at large

One-loop corrections from fermions give contribu-
tions of the form —g~P in/ where the minus sign is due
to Fermi statistics. If the Yukawa couplings are large
enough, the fermion contributions will dominate over the
bosonic ones at large P with the result that our vacuum is
only metastable. ' The effective potential in such a case is
depicted schematically in Fig. 1. Generally, however, the
scale 8 at which the potential becomes unstable is very
much larger than the scale A of the false vacuum.
Flores and Sher have noted that our vacuum need not

be absolutely stable; a metastable vacuum is acceptable if
its lifetime exceeds that of the Universe. It is also neces-
sary that the Universe can be trapped in the false vacuum
in the first place, and they argue that this is plausible. In
particular, the case at hand is different from the case of
the Linde-Weinberg bound. Below the Linde-Weinberg
bound, there is a metastable vacuum at zero temperature
which disappears at high temperature. For the cases ex-
amined in this paper, however, the metastable vacuum
does not destabilize at high temperature.
The vacuum decays by quantum tunneling to form

bubbles of the unstable phase which then expand classi-
cally to absorb all of the metastable phase. There are two
types of forces acting on a bubble: the potential-energy
advantage of the interior over the false vacuum, and its
surface tension. The potential energy favors expansion of
the bubble and grows with the volume; the surface ten-
sion favors contraction and grows with the surface area

(or as the radius if the bubble has thick walls). Thus,
small bubbles are dominated by surface tension and col-
lapse. Large bubbles are dominated by the potential en-
ergy and expand. The quantum tunneling must create a
bubble large enough that the bubble will continue to ex-
pand.
In general, the larger the top-quark mass or smaller the

Higgs-boson mass, the more unstable the potential and
the shorter the lifetime of our vacuum. Flores and Sher
translated the constraint on the lifetime into a constraint
on the top-quark and Higgs-boson masses. ' Figure 2
shows my results for these constraints. Below the lower
solid curve, the vacuum is absolutely stable. Between the
two solid curves it is metastable with a lifetime exceeding
the age of the Universe. These curves apply only to the
minimal standard model with a single Higgs doublet that
is valid up to A = 10' GeV. The upper curve is also
shown for different choices of the cutoff scale A, whereas
the dependence of the lower solid curve on cutoff scale
has been examined in Ref. 5. The lifetime has been com-
puted at zero temperature. The curve corresponding to
the lifetime constraint is significantly different from that
of Ref. 2, perhaps due to the use of more modern results
for the effective potential.

(b)

FIG. 1. The effective potential (a) when our vacuum is abso-
lutely stable and (b) when fermion masses are large enough that
it is not.
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vacuum regions. Depending on the relative rates of these processes, unstable regions could

either disappear or critically threaten the existence of our universe. As we shall see, these

two outcomes have very di↵erent implications in terms of constraints on the scale of inflation

H. Ref. [12] implicitly assumed that the AdS volumes benignly crunch without destroying the

stable electroweak vacua, while Ref. [13] did not consider the post-inflationary evolution. In

Sec. III, we discuss these scenarios and define di↵erent probabilities of the universe surviving

depending on the evolution of the AdS vacua.

In Sec. IV, we discuss corrections to the Higgs potential that can be important during infla-

tion. We find that Planck-suppressed operators (which one generically expects to be present)

can significantly alter the Higgs potential (see the dashed curve in Fig. 1), greatly enhancing

electroweak vacuum stability. Finally, in Sec. V, we conclude and identify the outstanding

questions for future work.

II. HIGGS FIELD EVOLUTION DURING INFLATION

In this section, we describe the formalism for studying the evolution of the Higgs field during

inflation. We begin with a single Hubble patch, assuming hhi = 0 initially, and follow the Higgs

field evolution as this region inflates. Our goal is to calculate the probability that the universe

can undergo the necessary amount of inflation without quantum fluctuations knocking the Higgs

out of its false vacuum. For large Higgs field values h � v, where v = 246 GeV is the Higgs

vev in the electroweak vacuum, we make use of the potential1

Ve↵(h) =
�e↵(h)

4
h4. (5)

Since �e↵ runs negative at higher scales, the Higgs potential turns over at some scale ⇤max. We

show the behavior of �e↵ in the left panel of Fig. 2, and ⇤max in the (mh,mt) plane, as well as

ellipses corresponding to the 68.27%, 95.45% and 99.73% confidence level regions for the two

parameters, in the right panel. The shape and scale of this potential determine the transition

1 Throughout this paper, we employ two-loop renormalization group equations with boundary conditions at

µ = mt as given in [7]. In addition, as in [7], we include anomalous dimension and one-loop e↵ective potential

contributions to the e↵ective quartic �
e↵

(h).
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FIG. 2. Left: �e↵(h) within the Standard Model for mh = 125.7 GeV,mt = 173.34 GeV. Right:

Contours of ⇤max (black, dashed) in the (mh,mt) plane. Also shown are ellipses corresponding to the

68.27%, 95.45% and 99.73% confidence level regions for two parameters. The measured values for the

masses are taken to be mh = 125.7 ± 0.4 GeV and mt = 173.34 ± 0.76 GeV. For the central values,

⇤max = 4.9⇥ 1010 GeV.

between the three di↵erent regimes of CdL, HM, and FP vacuum transitions shown in Fig. 1.

Our goal in this section is to explore the Higgs evolution in and elucidate the phenomenological

relevance of these regimes.

For simplicity and ease of comparison with earlier studies, we first concentrate on the Higgs

potential without any corrections from higher dimension operators; in Sec. IV, we will consider

Planck-suppressed corrections to the Higgs potential, which can be significant.

A. Various Approaches to Fluctuations Past the Potential Barrier

Tunneling through a classically impenetrable barrier is calculated using the Coleman-de

Luccia (CdL) formalism [10], which gives the nucleation rate of bubbles of true vacuum in

a region of false vacuum. An illuminating interpretation of the CdL transition in de Sitter

(dS) space is in a thermal context, as thermally-assisted tunneling [14], where the field is

thermally excited partially up the barrier and then tunnels through. The thermal contribution
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ONCE UPON A TIME A SM HIGGS WAS DISCOVERED ….

➤ … that, however, apparently had no Cosmological Implications 

➤ The Universe was deemed to be “Stable Enough” 

in Fig. 2 shows the scale Λ at which the RGEs would create a second minimum deeper than

the electroweak vacuum (λ < 0), leading to a possible instability of the SM potential. The

width of the band is obtained by varying the top mass and the value of αS(M2
Z) by their

one-standard-deviation errors. Fig. 3 shows zooms of the low-mass region of Fig. 2: the left

plot is identical apart from the change in scale, whereas the right plot includes an estimate

of the overall uncertainty due to higher-order corrections. We estimate this uncertainty by

adding in the numerical calculation the known, but incomplete, higher-order corrections.

The largest effect comes from the two-loop QCD correction to the top-quark pole mass,

which amounts to to a shift in MH of about 1 GeV. Since this effect is much larger than the

parametric estimate of higher-order corrections, we consider it as a conservative choice for

the theoretical error.

Requiring that the SM cannot develop a minimum deeper than the electroweak vacuum

for any scale Λ < MP , we obtain the following lower bound on the Higgs mass:

MH > 128.6 GeV + 2.6 GeV

(

mt − 173.1 GeV

1.3 GeV

)

− 2.2 GeV

(

αS(M2
Z) − 0.1193

0.0028

)

± 1 GeV .

(4)

The Planck-scale stability bound (4) is also shown in Fig. 4 as a (somewhat broader) 1−CL

‘pyramid’. Equations (3) and (4) delimit between them the ‘survival’ region (represented as

the shaded [green] band in Fig. 4), within which the SM can be safely extrapolated up to

the Planck scale.

It should be noted that the ‘unstable’ region is not necessarily incompatible with our

existence, as long as the electroweak vacuum survives for a time longer than the age of the

universe, before quantum tunneling. The total quantum tunneling probability p throughout

the period of the history of the Universe during which thermal fluctuations have been neg-

ligible is given by p = maxh<Λ[VUh4 exp (−8π2/3|λ(h)|)], where VU = τ 4
U is the space-time

volume of the past light cone of the observable Universe, τU being the lifetime of the Uni-

verse. Taking τU = 13.7 ± 0.2 Gyrs from the analysis of WMAP data [ 15] and p < 1, one

finds that the electroweak vacuum has a sufficiently long lifetime as long as

MH > 108.9 GeV + 4.0 GeV

(

mt − 173.1 GeV

1.3 GeV

)

− 3.5 GeV

(

αS(M2
Z) − 0.1193

0.0028

)

± 3 GeV .

(5)

The error of 3 GeV is estimated by combining uncertainties from higher-order corrections and

from the prefactor in p. This constraint is the leftmost ‘pyramid’ in Fig. 4, and the ‘collapse’

region at lower MH is light [pink] shaded and hatched. The ‘metastability’ bound obtained

considering zero-temperature fluctuations up to a scale Λ is plotted as a dark shaded [red]

band in Figs. 2 and 3, where the theoretical error is included only in the right plot of the

7

stable

metastable

unstable

106 107 108 109 1010 1011 1012 1013 1014 1015

100

110

120

130

L HGeVL

m
H
HGe

V
L

SM

Figure 1: Vacuum structure of the SM as a function of the Higgs boson mass. Regions of
stability/metastability/instability are denoted in blue/purple/red respectively. The solid lines
indicate central values while the dotted lines indicate ±2� error bars on the experimental mea-
surement of the top quark mass.

ii) Metastable (0 > �H > �̂H). The vacuum is not the absolute minimum, but its lifetime is
longer than the age of the Universe.

iii) Unstable (�̂H > �H). The vacuum is not the absolute minimum, and it decays within the
age of the Universe.

Here the critical coupling �̂H is determined by the requirement that the tunneling rate per unit
volume is comparable to the age of the Universe. In particular, we demand that H4 = �, where
H�1 ' 3.7 Gyr and � reads,

� = max
h
R�4 exp(�16⇡2/3|�̂H |)

i ����
R�1<⇤

. (1)

Here R is the characteristic length scale of the bounce, which is bounded by the cuto↵. As
we will elaborate on later, the vacuum structure may be more complicated if the new physics
includes additional scalar particles.

It is possible that our vacuum resides in a stable or metastable regime, but the unstable
regime is of course excluded by our existence. In much of our analyses, it will be convenient to
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➤ During Inflation Higgs Experiences Same Quantum 
Fluctuations as the Inflaton 

➤ Implies a potentially dark side for our Universe: a fluctuation 
can sample unstable part of potential during inflation 

➤ Let us take a close look at this:  assume a SM Higgs boson 
with no gravitational stabilizing corrections

BUT THE TALE CHANGES IN INFLATION …
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The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson
masses in the minimal standard model, our vacuum is instead metastable with a lifetime exceeding
the present age of the Universe. It has been suggested that a metastable vacuum is generally ruled
out because high-energy cosmic-ray collisions would have long ago induced its decay. I argue that
the reasoning for this conclusion is erroneous. As a consequence, upper bounds on the top-quark
mass derived from stability arguments are relaxed. Also presented is an analytic method for accu-
rately approximating the lifetime of the vacuum from the effective potential without solving for the
O(4) bounce solution numerically.

I. INTRODUCTION

In Weinberg-Salam theory, the weak gauge group is
broken by a Higgs sector whose renormalizable potential
is of the form

v(y) =——'p lp +—'A,y
This potential receives radiative corrections and the vac-
uum expectation of P is determined by the effective po-
tential which includes these corrections. One-loop
corrections from bosons, such as the Higgs boson, give
contributions of the form A, P 1ng times numerical fac-
tors. These corrections dominate the usual XP at large

One-loop corrections from fermions give contribu-
tions of the form —g~P in/ where the minus sign is due
to Fermi statistics. If the Yukawa couplings are large
enough, the fermion contributions will dominate over the
bosonic ones at large P with the result that our vacuum is
only metastable. ' The effective potential in such a case is
depicted schematically in Fig. 1. Generally, however, the
scale 8 at which the potential becomes unstable is very
much larger than the scale A of the false vacuum.
Flores and Sher have noted that our vacuum need not

be absolutely stable; a metastable vacuum is acceptable if
its lifetime exceeds that of the Universe. It is also neces-
sary that the Universe can be trapped in the false vacuum
in the first place, and they argue that this is plausible. In
particular, the case at hand is different from the case of
the Linde-Weinberg bound. Below the Linde-Weinberg
bound, there is a metastable vacuum at zero temperature
which disappears at high temperature. For the cases ex-
amined in this paper, however, the metastable vacuum
does not destabilize at high temperature.
The vacuum decays by quantum tunneling to form

bubbles of the unstable phase which then expand classi-
cally to absorb all of the metastable phase. There are two
types of forces acting on a bubble: the potential-energy
advantage of the interior over the false vacuum, and its
surface tension. The potential energy favors expansion of
the bubble and grows with the volume; the surface ten-
sion favors contraction and grows with the surface area

(or as the radius if the bubble has thick walls). Thus,
small bubbles are dominated by surface tension and col-
lapse. Large bubbles are dominated by the potential en-
ergy and expand. The quantum tunneling must create a
bubble large enough that the bubble will continue to ex-
pand.
In general, the larger the top-quark mass or smaller the

Higgs-boson mass, the more unstable the potential and
the shorter the lifetime of our vacuum. Flores and Sher
translated the constraint on the lifetime into a constraint
on the top-quark and Higgs-boson masses. ' Figure 2
shows my results for these constraints. Below the lower
solid curve, the vacuum is absolutely stable. Between the
two solid curves it is metastable with a lifetime exceeding
the age of the Universe. These curves apply only to the
minimal standard model with a single Higgs doublet that
is valid up to A = 10' GeV. The upper curve is also
shown for different choices of the cutoff scale A, whereas
the dependence of the lower solid curve on cutoff scale
has been examined in Ref. 5. The lifetime has been com-
puted at zero temperature. The curve corresponding to
the lifetime constraint is significantly different from that
of Ref. 2, perhaps due to the use of more modern results
for the effective potential.

(b)

FIG. 1. The effective potential (a) when our vacuum is abso-
lutely stable and (b) when fermion masses are large enough that
it is not.
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➤ During Inflation Higgs Experiences Same Quantum 
Fluctuations as the Inflaton 

➤ Story is about this “just right” Higgs in an inflating Universe 
that becomes like ours. 

1. The storyline — how does a fluctuation evolve? 

2. The ending — how does the spacetime react?

BUT THE TALE CHANGES IN INFLATION …
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uum expectation of P is determined by the effective po-
tential which includes these corrections. One-loop
corrections from bosons, such as the Higgs boson, give
contributions of the form A, P 1ng times numerical fac-
tors. These corrections dominate the usual XP at large

One-loop corrections from fermions give contribu-
tions of the form —g~P in/ where the minus sign is due
to Fermi statistics. If the Yukawa couplings are large
enough, the fermion contributions will dominate over the
bosonic ones at large P with the result that our vacuum is
only metastable. ' The effective potential in such a case is
depicted schematically in Fig. 1. Generally, however, the
scale 8 at which the potential becomes unstable is very
much larger than the scale A of the false vacuum.
Flores and Sher have noted that our vacuum need not

be absolutely stable; a metastable vacuum is acceptable if
its lifetime exceeds that of the Universe. It is also neces-
sary that the Universe can be trapped in the false vacuum
in the first place, and they argue that this is plausible. In
particular, the case at hand is different from the case of
the Linde-Weinberg bound. Below the Linde-Weinberg
bound, there is a metastable vacuum at zero temperature
which disappears at high temperature. For the cases ex-
amined in this paper, however, the metastable vacuum
does not destabilize at high temperature.
The vacuum decays by quantum tunneling to form

bubbles of the unstable phase which then expand classi-
cally to absorb all of the metastable phase. There are two
types of forces acting on a bubble: the potential-energy
advantage of the interior over the false vacuum, and its
surface tension. The potential energy favors expansion of
the bubble and grows with the volume; the surface ten-
sion favors contraction and grows with the surface area

(or as the radius if the bubble has thick walls). Thus,
small bubbles are dominated by surface tension and col-
lapse. Large bubbles are dominated by the potential en-
ergy and expand. The quantum tunneling must create a
bubble large enough that the bubble will continue to ex-
pand.
In general, the larger the top-quark mass or smaller the

Higgs-boson mass, the more unstable the potential and
the shorter the lifetime of our vacuum. Flores and Sher
translated the constraint on the lifetime into a constraint
on the top-quark and Higgs-boson masses. ' Figure 2
shows my results for these constraints. Below the lower
solid curve, the vacuum is absolutely stable. Between the
two solid curves it is metastable with a lifetime exceeding
the age of the Universe. These curves apply only to the
minimal standard model with a single Higgs doublet that
is valid up to A = 10' GeV. The upper curve is also
shown for different choices of the cutoff scale A, whereas
the dependence of the lower solid curve on cutoff scale
has been examined in Ref. 5. The lifetime has been com-
puted at zero temperature. The curve corresponding to
the lifetime constraint is significantly different from that
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FIG. 1. The effective potential (a) when our vacuum is abso-
lutely stable and (b) when fermion masses are large enough that
it is not.
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A MODEL — STATISTICAL

➤ How to Describe the Fluctuation Evolution? 

➤ Probabilistic Evolution: Fokker-Planck Equation 

➤ In absence of potential, obtain diffusion 

➤ Scales like # of e-folds

at the end of inflation. Patches with �h > (<) ⇤max subsequently evolve towards the true

(electroweak) vacuum and, as the horizon expands post-inflation, the di↵erent patches come

back into causal contact with one another. This gives rise to a Universe with regions of di↵erent

Higgs vev separated by domain walls, in which the lower-energy-density true vacuum regions

would percolate and come to dominate space, again precluding a Universe such as ours. Indeed,

the existence of a single true vacuum patch at the end of inflation may be su�cient to overwhelm

the electroweak patches, making our Universe unlikely even if such patches are extremely rare

as a result of the huge number of patches e3Nend present at the end of inflation [17, 18]. However,

we avoid this situation by having a su�ciently high re-heat temperature, T 2
R & h�h2(t)i. The

Higgs then becomes rapidly thermalized and settles down to the electroweak vacuum.

We have now shown how to compute the upper bound on the number of e-folds that inflation

can proceed before large local field fluctuations produce large inhomogeneities, precluding a

relatively homogeneous Universe such as ours. So far we have only done this either assuming

a Gaussian distributed field (Sec. II), or carrying out a perturbative expansion that breaks

down just as the instabilities become important (this section). In the next section, we consider

the Fokker-Planck equation that, once supplied with the correct potential, reproduces the non-

Gaussian tails of the distribution and allows us to gain more information about the rare but

important unstable patches. This will in turn allow us to better understand the Universe that

emerges.

IV. STANDARD MODEL HIGGS IN THE FOKKER-PLANCK EQUATION

The Fokker-Planck (FP) approach to studying the evolution of scalar field fluctuations in a

dS background was previously applied to the Higgs in Refs. [12, 17, 18]. Here we make use of

what we learned in Secs. II and III about Higgs potential during inflation to make contact with

previous results, notably those in [18]. We will not find significant numerical di↵erences with

Ref. [18], but we will be able to better interpret those results.

The FP equation,
@P

@t
=

@

@�h


V 0(�h)

3H
P +

H3

8⇡2

@P

@�h

�
, (39)

20

Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
d

dt
|�hk(t)|2 =

d

dt

✓Z
|�hk(t)|2

◆
� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
(✏aH) =

d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt

⌦
�h2(t)

↵
= �2�

H

⌦
�h2(t)

↵2
+

H3

4⇡2
. (12)

The solution to this equation is

⌦
�h2(t)

↵
=

1p�2�

H2

2⇡
tan

✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
�h2(t)

↵
=

H2N
4⇡2

. (14)
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INFLATION & HORIZONS

➤ Usual story: CMB is sampling of causally separated patches 
seeded by quantum fluctuations
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uum expectation of P is determined by the effective po-
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contributions of the form A, P 1ng times numerical fac-
tors. These corrections dominate the usual XP at large

One-loop corrections from fermions give contribu-
tions of the form —g~P in/ where the minus sign is due
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bosonic ones at large P with the result that our vacuum is
only metastable. ' The effective potential in such a case is
depicted schematically in Fig. 1. Generally, however, the
scale 8 at which the potential becomes unstable is very
much larger than the scale A of the false vacuum.
Flores and Sher have noted that our vacuum need not
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sary that the Universe can be trapped in the false vacuum
in the first place, and they argue that this is plausible. In
particular, the case at hand is different from the case of
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which disappears at high temperature. For the cases ex-
amined in this paper, however, the metastable vacuum
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cally to absorb all of the metastable phase. There are two
types of forces acting on a bubble: the potential-energy
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the bubble and grows with the volume; the surface ten-
sion favors contraction and grows with the surface area

(or as the radius if the bubble has thick walls). Thus,
small bubbles are dominated by surface tension and col-
lapse. Large bubbles are dominated by the potential en-
ergy and expand. The quantum tunneling must create a
bubble large enough that the bubble will continue to ex-
pand.
In general, the larger the top-quark mass or smaller the

Higgs-boson mass, the more unstable the potential and
the shorter the lifetime of our vacuum. Flores and Sher
translated the constraint on the lifetime into a constraint
on the top-quark and Higgs-boson masses. ' Figure 2
shows my results for these constraints. Below the lower
solid curve, the vacuum is absolutely stable. Between the
two solid curves it is metastable with a lifetime exceeding
the age of the Universe. These curves apply only to the
minimal standard model with a single Higgs doublet that
is valid up to A = 10' GeV. The upper curve is also
shown for different choices of the cutoff scale A, whereas
the dependence of the lower solid curve on cutoff scale
has been examined in Ref. 5. The lifetime has been com-
puted at zero temperature. The curve corresponding to
the lifetime constraint is significantly different from that
of Ref. 2, perhaps due to the use of more modern results
for the effective potential.

(b)

FIG. 1. The effective potential (a) when our vacuum is abso-
lutely stable and (b) when fermion masses are large enough that
it is not.
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A MODEL — STATISTICAL

➤ During Inflation Higgs Experiences Same Quantum 
Fluctuations as the Inflaton

Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
d
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|�hk(t)|2 =
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|�hk(t)|2
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� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
(✏aH) =

d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt
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�h2(t)
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= �2�
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⌦
�h2(t)

↵2
+

H3

4⇡2
. (12)

The solution to this equation is

⌦
�h2(t)

↵
=

1p�2�

H2

2⇡
tan

✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
�h2(t)

↵
=

H2N
4⇡2

. (14)
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INFLATION AND HORIZONS

➤ Average fluctuation in an 
inflationary patch (     ) is sum 
over super horizon modes 

➤ Higgs undergoes random walk 
within patch with each 
subsequent mode crossing

CONTRIBUTIONS TO HIGGS EVOLUTION

(I) Stochastic evolution 
• Freeze out of mode fluctuations !hk ~ H/2" leads to local field 

value that is sum over superhorizon modes (as for massless fields) 
• Higgs field undergoes “random walk” within patch with each 

subsequent mode crossing 

(II) Higgs Potential 
• Drives net evolution depending on V’(h).

� →

� ↑

H�1



STATISTICAL MODEL FROM HIGGS EOM

II. TOY MODEL: �h4 FIELD EVOLUTION IN THE GAUSSIAN APPROXIMATION

We begin by calculating the evolution of a scalar field in dS space employing a toy model

frequently used in the literature and outlined in [26]. This model illustrates many of the

important features, and serves as a check on the results, of the full SM Higgs case analyzed in

Secs. III and IV. It consists of a quartically-coupled real scalar,

V (h) =
�

4
h4 (3)

where � is taken to be constant. This simple model will turn out to be a good approximation

for the Higgs field during the early stages of inflation, provided � is chosen appropriately. In

the case of the Higgs, the value of the coupling �(µ) depends on the relevant energy scale—we

will see in the next section that an appropriate choice is µ = H, and here we implicitly consider

� < 0 such that the above potential is unstable as for the Higgs field during a period of inflation

with H > ⇤I . In addition, we assume the scalar h is minimally-coupled and that its potential

does not receive large corrections due to the inflaton energy density. Non-minimal curvature

coupling [19, 23], coupling to the inflaton [14] or higher-dimension operators [18, 32] can serve

to stabilize or destabilize the potential during inflation. Within the context of this simplified

model we show that the correlation function for the scalar field fluctuations, h�h2(t)i, diverges

in finite time, and we discuss the implications of this divergence for our Universe.

The equation of motion for a canonically-normalized scalar field h in a dS background is

given by

ḧ + 3Hḣ �
 

~r
a

!2

h + V 0(h) = 0. (4)

We decompose the scalar field in terms of a homogeneous background value h̄(t) and local

fluctuations �h(x, t). We will assume h̄(0) = 0, h̄(t) = 0 throughout inflation; taking non-zero

values will only lead to faster divergence. In this case, Eq. (4) is the equation of motion for the

fluctuations of the Higgs field, which can be decomposed into mode functions

�h(x, t) =

Z
d3k

(2⇡)3
a~k�hk(t)e

i~k·~x + h.c., (5)

where the creation and annihilation operators a~k, a~k
† satisfy the usual communtation relations.
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We now consider the evolution of the fluctuations in the context of the Hartree-Fock (HF) or

Gaussian approximation, where we can write all higher-point correlators in terms of h�h2(t)i.
As we discuss in Sec. IV, this is a good approximation before fluctuations become large and

self-interactions become relevant. Using the Gaussian approximation we can linearize Eq. (4),

including the interactions, and then inserting Eq. (5) into Eq. (4) gives the mode equation

�̈hk(t) + 3H ˙�hk(t) +

(✓
k

a

◆2

+ 3�
⌦
�h2(t)

↵
)

�hk(t) = 0, (6)

where
⌦
�h2(t)

↵
=

Z k=✏aH

k=1/L

d3k

(2⇡)3
|�hk(t)|2 (7)

is the two-point correlation function for the value of the scalar field in a Hubble patch, obtained

by integrating over all superhorizon modes with k  ✏aH. ✏ is an O(1) constant chosen

to distinguish between sub- and superhorizon modes, though our results will ultimately be

independent of ✏. We will take tk to be the time that the physical wavelength of the mode

exceeds the horizon size and the mode freezes out, given by k = ✏a(tk)H.

In writing Eq. (6) with the integral of Eq. (7) taken over superhorizon modes only, we have

neglected subhorizon mode correlations. These terms can be cancelled using local counterterms

in order to derive an equation describing the evolution of superhorizon modes, and as such the

dominant e↵ects of subhorizon modes can be reabsorbed into renormalization of the coupling

�—we return to this point in Sec. III. In addition, note that Eq. (7) requires an infrared (IR)

cuto↵, corresponding to the fact that we are studying fluctuations relative to a homogeneous

background value and so only consider modes that were subhorizon at the onset of inflation. We

choose a co-moving box of length L whose size is simply given by the region of space over which

the initial condition h̄(0) = 0 is a good approximation, corresponding to an IR cuto↵ k � a0H

where a0 is the scale factor as the onset of inflation.2 The IR cuto↵ corresponds to the longest

observable scale (or “resolution”) for observing mode fluctuation relative to a homogeneous

background value, which is limited to a causally-connected region at the beginning of inflation

[33].

2 The modes with k < a
0

H e↵ectively determine h̄(0) within this box.
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See Kearney, Yoo, 
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PERPLEXITIES

➤ When is a statistical treatment appropriate? 

➤ What is V(h)? 

➤ What is the response of the spacetime to sampling of the 
unstable potential?  When is the sampling problematic for a 
Universe like ours?

Hook, Kearney, Shakya, KZ 1404.5953

Kearney, Yoo, KZ 1503.05193

East, Kearney, Yoo, KZ 1607.00381



FIELD EXCURSIONS

➤ When is a Statistical Treatment Appropriate?
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FIG. 1. The Higgs potential illustrated with the regimes of validity for various solutions for the Higgs

vacuum evolution during inflation: Coleman-de Luccia (CdL), Hawking-Moss (HM) and Fokker-Planck

(FP). Left: For H ⇠< ⇤max, the CdL tunneling or single bounce HM instanton yields the transition

probability. Right: For H � ⇤max, the potential barrier at ⇤max is irrelevant, and a stochastic random

walk approach is necessary until classical slow roll takes over at h = ⇤c (H = 10⇤max has been chosen).

The dashed curve in the right-hand panel shows the e↵ect of Planck-suppressed stabilizing terms to

the potential, which we study in Sec. IV. To illustrate the relative scale between the two panels, the

dashed lines show the region where the left panel fits into the right panel.

in both the understanding of the domain of validity and the implementation of the solutions,

as we discuss in more detail in Sec. II.

Once the probability distribution of the Higgs expectation value has been computed, the

next important question is its implication for the evolution of the universe. The HM or FP

probabilities give the distribution of vacua across the e3Ne causally disconnected Hubble patches

at the end of inflation. In the case that H ⇠< ⇤max, most of these Hubble patches will be in

the safe electroweak vacuum while, when H ⇠> ⇤max, most of the Hubble patches are in the

unstable vacuum. The probability that we evolve into a universe that looks like ours depends

on the evolution of the unstable vacuum patches once inflation ends. These regions exhibit a

large negative vacuum energy density, so will eventually transition to an anti-de Sitter (AdS)

phase and “crunch.” However, as they are at a lower energy density than the electroweak

vacuum regions, the crunching bubbles of true vacuum can also “eat” the false electroweak

4

Coleman-de Luccia
Hawking-Moss

Fokker-Planck

�h ⇠ H

2⇡

Hook, Kearney, Shakya, KZ 1404.5953



FIELD EXCURSIONS

➤ Smallest Excursions 

➤ Moderate Excursions 

➤ Big Excursions

(Coleman-DeLuccia)

(Hawking-Moss)

(Fokker-Planck)

Rarest Transitions

Rare Transitions

Not Rare Transitions

• CdL bubble nucleation is the dominant contribution when

H2⇠< V 00

e↵(⇤max) ⇠ �e↵(⇤max)⇤
2
max.

• A single HM instanton is the dominant contribution when

V 00

e↵(⇤max)⇠< H2⇠< (Ve↵(⇤max))
1/2 ⇠ (�e↵(⇤max))

1/2 ⇤2
max.

• FP statistical treatment is needed when the potential barrier becomes small in comparison

to the quantum fluctuations, i.e. for H⇠> (Ve↵(⇤max))
1/4.

The recent LHC and BICEP2 data suggest that |V 00

e↵(⇤max)| < 4H2 and likely H ⇠>
(Ve↵(⇤max))

1/4, such that the HM and stochastic approaches are most relevant to Higgs evolu-

tion during inflation. However, even without input from BICEP2, this regime is of far greater

interest than the CdL regime. For H su�ciently small that CdL tunneling dominates, the

transition probability is su�ciently suppressed that the likelihood of our universe existing is

exponentially close to unity regardless of the evolution of the unstable vacuum patches —

the fluctuations are simply too weak to knock the Higgs out of the electroweak vacuum. For

this reason, we will use the HM solution and the stochastic approach to study the evolution

of the Higgs field. We find that �e↵(⇤max) ⇠ 10�4, such that the FP regime corresponds

to H/⇤max ⇠> 0.1. In the next subsection, we describe the implementation of the stochastic

approach using the Fokker-Planck equation.

B. The Fokker-Planck Equation

The probability P = P (h, t) to find the Higgs field at value h at time t satisfies the Fokker-

Planck equation [19, 20]
@P

@t
=

@

@h


V 0(h)

3H
P +

H3

8⇡2

@P

@h

�
. (9)

The first moment of the Higgs field in a time ⌧ is determined by the equations of motion

assuming “slow roll” evolution of the Higgs field, h�hi
⌧

= � V 0

3H2 ; this approximation is valid as

long as h⇠< H
p
3/�e↵(h). The second moment is dominated by the random fluctuations of the

9
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FIELD EXCURSIONS

➤ Smallest Excursions 

➤ Moderate Excursions 

➤ Big Excursions

(Coleman-DeLuccia)

(Hawking-Moss)

(Fokker-Planck)

Rarest Transitions

Rare Transitions

Not Rare Transitions

• CdL bubble nucleation is the dominant contribution when

H2⇠< V 00

e↵(⇤max) ⇠ �e↵(⇤max)⇤
2
max.

• A single HM instanton is the dominant contribution when

V 00

e↵(⇤max)⇠< H2⇠< (Ve↵(⇤max))
1/2 ⇠ (�e↵(⇤max))

1/2 ⇤2
max.

• FP statistical treatment is needed when the potential barrier becomes small in comparison

to the quantum fluctuations, i.e. for H⇠> (Ve↵(⇤max))
1/4.

The recent LHC and BICEP2 data suggest that |V 00

e↵(⇤max)| < 4H2 and likely H ⇠>
(Ve↵(⇤max))

1/4, such that the HM and stochastic approaches are most relevant to Higgs evolu-

tion during inflation. However, even without input from BICEP2, this regime is of far greater

interest than the CdL regime. For H su�ciently small that CdL tunneling dominates, the

transition probability is su�ciently suppressed that the likelihood of our universe existing is

exponentially close to unity regardless of the evolution of the unstable vacuum patches —

the fluctuations are simply too weak to knock the Higgs out of the electroweak vacuum. For

this reason, we will use the HM solution and the stochastic approach to study the evolution

of the Higgs field. We find that �e↵(⇤max) ⇠ 10�4, such that the FP regime corresponds

to H/⇤max ⇠> 0.1. In the next subsection, we describe the implementation of the stochastic

approach using the Fokker-Planck equation.

B. The Fokker-Planck Equation

The probability P = P (h, t) to find the Higgs field at value h at time t satisfies the Fokker-

Planck equation [19, 20]
@P

@t
=

@

@h


V 0(h)

3H
P +

H3

8⇡2

@P

@h

�
. (9)

The first moment of the Higgs field in a time ⌧ is determined by the equations of motion

assuming “slow roll” evolution of the Higgs field, h�hi
⌧

= � V 0

3H2 ; this approximation is valid as

long as h⇠< H
p
3/�e↵(h). The second moment is dominated by the random fluctuations of the

9

• CdL bubble nucleation is the dominant contribution when

H2⇠< V 00

e↵(⇤max) ⇠ �e↵(⇤max)⇤
2
max.

• A single HM instanton is the dominant contribution when

V 00

e↵(⇤max)⇠< H2⇠< (Ve↵(⇤max))
1/2 ⇠ (�e↵(⇤max))

1/2 ⇤2
max.

• FP statistical treatment is needed when the potential barrier becomes small in comparison

to the quantum fluctuations, i.e. for H⇠> (Ve↵(⇤max))
1/4.

The recent LHC and BICEP2 data suggest that |V 00

e↵(⇤max)| < 4H2 and likely H ⇠>
(Ve↵(⇤max))

1/4, such that the HM and stochastic approaches are most relevant to Higgs evolu-

tion during inflation. However, even without input from BICEP2, this regime is of far greater

interest than the CdL regime. For H su�ciently small that CdL tunneling dominates, the

transition probability is su�ciently suppressed that the likelihood of our universe existing is

exponentially close to unity regardless of the evolution of the unstable vacuum patches —

the fluctuations are simply too weak to knock the Higgs out of the electroweak vacuum. For

this reason, we will use the HM solution and the stochastic approach to study the evolution

of the Higgs field. We find that �e↵(⇤max) ⇠ 10�4, such that the FP regime corresponds

to H/⇤max ⇠> 0.1. In the next subsection, we describe the implementation of the stochastic

approach using the Fokker-Planck equation.

B. The Fokker-Planck Equation

The probability P = P (h, t) to find the Higgs field at value h at time t satisfies the Fokker-

Planck equation [19, 20]
@P

@t
=

@

@h


V 0(h)

3H
P +

H3

8⇡2

@P

@h

�
. (9)

The first moment of the Higgs field in a time ⌧ is determined by the equations of motion

assuming “slow roll” evolution of the Higgs field, h�hi
⌧

= � V 0

3H2 ; this approximation is valid as

long as h⇠< H
p
3/�e↵(h). The second moment is dominated by the random fluctuations of the

9

H & (V
e↵

(⇤
max

))1/4

“Single bounce limit of Fokker-Planck solution”
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vertical line), where we take

PHM ' exp


�8⇡2V (⇤max)

3H4

�
(21)

to be the probability for the Higgs field in a Hubble patch to transition to the top of the

potential. Including the number of e-folds �Ncl taken for the fluctuation to evolve to |h| ' h /sr,

we find a limit H/⇤max ⇠< 0.075. This is similar to the FP with classical evolution limit

H/⇤max ⇠< 0.076, as expected since the FP approach should reproduce the HM transition

probability in the H ⌧ ⇤max regime [15]. If we neglect classical evolution and simply require

that no patches transition to the top of the barrier via a HM transition within 60 e-folds of

inflation, we find the weaker limit H/⇤max⇠< 0.058, in similarly good agreement with Eq. (15).

Overall, we find that, in the presence of a Higgs vacuum instability, the existence of our

Universe requires that any inflationary epoch satisfy H ⇠< 0.07⇤max. Moreover, we note that

this result is fairly insensitive to post-inflationary physics; while the constraint does weaken if

we suppose fluctuations beyond the barrier are stabilized by, e.g., e�cient reheating, the long,

non-Gaussian tails of the fluctuation probability distribution make this e↵ect small.

B. E↵ect of stabilizing correction to the Higgs potential

Finally, we comment on the possibility of additional Higgs couplings to inflationary dynamics

that may be capable of su�ciently stabilizing the Higgs potential during inflation. For instance,

Higgs-inflaton and Higgs-curvature couplings are generally induced by loop corrections [17,

47] and have been suggested as a minimal stabilization mechanism [11, 12, 15–17, 22, 48] of

the EW vacuum during inflation because of their contribution to the e↵ective mass of the

Higgs. Similarly, Planck-suppressed operators coupling the Higgs to the inflaton or the inflaton

potential can result in a large e↵ective mass [15], e.g.,

V � kVIh
2

M2
P

= 3kH2h2, (22)

which for k > 0 would stabilize the vacuum at h = 0.7

7A related alternative is that Higgs couplings to moduli may modify and stabilize the potential as in, e.g., [49].

Here we focus on couplings directly to H.
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FIELD EXCURSIONS

➤ Large excursions (into unstable part of potential) do not signal 
the end of inflation 

➤ As long as statistical fluctuations dominate over potential, 
diffusion continues with inflation undisturbed 

➤ Rare fluctuations do not end inflation globally

Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using

Z
d

dt
|�hk(t)|2 =

d

dt

✓Z
|�hk(t)|2

◆
� 4⇡k2

(2⇡)3
|�hk(tk)|2 d

dt
(✏aH) =

d

dt

⌦
�h2(t)

↵ � H3

4⇡2
. (11)

We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt

⌦
�h2(t)

↵
= �2�

H

⌦
�h2(t)

↵2
+

H3

4⇡2
. (12)

The solution to this equation is

⌦
�h2(t)

↵
=

1p�2�

H2

2⇡
tan

✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
�h2(t)

↵
=

H2N
4⇡2

. (14)
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Second we observe that, for � > 0, the interaction tends to reduce the size of the fluctuations

and stabilize the scalar field—the distribution of field values approaches an equilibrium state,

as described in [26]. The more interesting case is when � < 0, as for the SM Higgs with H > ⇤I

such that �(H) < 0. In this case, we see that the superhorizon fluctuations grow even more

rapidly than for a massless field, and in fact diverge after a finite number of e-folds,

Nmax =
⇡2

p�2�
. (15)

What does this divergence mean physically? As mentioned previously, h�h2(t)i is the cor-

relation function for local superhorizon mode fluctuations (“local” meaning the field value is

averaged over a Hubble-sized patch). It is analogous to more familiar correlation functions such

as h��2(t)i, where � is the inflaton and �� represents the local quantum fluctuations around

the homogeneous background value. In the same way that the local fluctuations in the infla-

ton value give rise to local fluctuations in energy density, the fluctuations �h(x, t) give rise to

di↵erent values of the field value in di↵erent patches and hence di↵erent local energy densities.

If the field value in a particular patch fluctuates to a very large value such that |�| �h4 ⇠>
H2M2

P , the energy density in the field ⇢h ⇡ V (�h) < 0 may cancel the inflaton energy density

⇢� ⇠ H2M2
P , producing a patch in which the local energy density is small or negative. This

backreaction causes the patch to stop inflating and crunch, giving rise to a defect such as a

black hole. More precisely, solving the Friedmann equations reveals that, once the field value

in a patch exits the slow-roll regime, |�h|⇠>
q

3
��

, the field value diverges rapidly and the patch

quickly evolves to a singularity, within ⇠ 1 e-fold. In the Gaussian approximation, though, the

typical size of a field fluctuation in a patch is of order
ph�h2(t)i. Consequently, such large

fluctuations are extremely rare throughout most of inflation. Moreover, the rare occurrence

of backreacting and non-inflating patches does not disrupt inflation globally, and the resulting

defects would be diluted by inflation, minimizing observational implications.

However, when N approaches Nmax, large field value fluctuations are no longer rare; a

significant fraction of the patches that eventually evolve into the observable Universe would

develop instabilities. Consequently, the resulting Universe would exhibit large inhomogeneities

as a result of the defects produced—in the case of our Universe, large inhomogeneities would be

10

Divergence occurs when =) 70 . N
max

. 100
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WHAT IS V(H)?

➤ Effective potential evaluated at               typically employed 

➤ Not immediately clear exactly what this means as effective 
potential away from extrema is unphysical 

➤ However, in quasi-conformal regime, may not have a big 
impact on the result

µ = �h
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FIG. 2. Left: �e↵(h) within the Standard Model for mh = 125.7 GeV,mt = 173.34 GeV. Right:

Contours of ⇤max (black, dashed) in the (mh,mt) plane. Also shown are ellipses corresponding to the

68.27%, 95.45% and 99.73% confidence level regions for two parameters. The measured values for the

masses are taken to be mh = 125.7 ± 0.4 GeV and mt = 173.34 ± 0.76 GeV. For the central values,

⇤max = 4.9⇥ 1010 GeV.

ellipses corresponding to the 68.27%, 95.45% and 99.73% confidence level regions for the two

parameters, in the right panel. The shape and scale of this potential determine the transition

between the three di↵erent regimes of CdL, HM, and FP vacuum transitions shown in Fig. 1.

Our goal in this section is to explore the Higgs evolution in and elucidate the phenomenological

relevance of these regimes.

For simplicity and ease of comparison with earlier studies, we first concentrate on the Higgs

potential without any corrections from higher dimension operators; in Sec. IV, we will consider

Planck-suppressed corrections to the Higgs potential, which can be significant. We also assume

thatH is (to a very good approximation) constant during inflation, in order to study the general

phenomenon of electroweak vacuum stability during inflation in a model-independent manner.
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Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
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where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space
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WHAT IS V(H)? WILSONIAN EFT

➤ SM fields come in active and passive 

1. Passive modes decay outside the horizon; active grow 

➤ Fermions & gauge bosons = passive; scalars = active 

2. Equations describe evolution of super-horizon modes 

➤ Potential is the RG-improved Higgs potential 

3. Fermions and gauge bosons are active on sub-horizon scales 

➤ Renormalize coupling as in Minkowski space 

Kearney, Yoo, KZ 1503.05193

(Woodard and collaborators)



WHAT IS V(H)? WILSONIAN EFT

➤ Prescription: run SM down from UV as in Minkowski space, 
integrating out passive states where the mode functions 
become suppressed 

➤ Consistency: 

             : fermions and gauge bosons decouple at horizon 
scale,   

              : fermions and gauge bosons decouple at “mass 
threshold,”                   ,

V (h) =
1

4
�h4 �

⇣
µ '

p
H2 + h2

⌘

h ⌧ H

h � H

h ⇠ H

mf = yfh mV = gh

with

Kearney, Yoo, KZ 1503.05193

Verified by explicit calculation in Herranen et al 1407.3141



CONSISTENCY CHECK: INFRARED LOGS

➤ Calculate divergence of            utilizing in-in formalism

1

xy xy

z
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Leading IR logs

xy

W, Z

W, Z

xy

t

x y� �� �
Subleading IR logs

FIG. 1. Sample Feynman diagrams included in our calculation of the Higgs two-point correlation

function. The first two graphs (labeled “Leading IR logs”) contribute to the late-time divergence

of the Higgs two point correlation
⌦
�h2(t)

↵
. The last three graphs do not directly contribute to the

leading divergence, but serve to renormalize the Higgs self-coupling �. The points x, y are assumed

to be separated by less than one Hubble length during inflation and the gauge boson propagators, for

reasons we explain in the text, include only the transverse degrees of freedom.

theory. We will find that computing these first two graphs reproduces the leading behavior that

we observed in the previous section. We will also argue that the other graphs do not contribute

to the leading divergence of the Higgs two-point correlation function. This observation will

allow us to connect our toy model to the SM.

To be explicit, we compute the two-point correlation function utilizing the “in-in” formal-

ism. (For a review of the “in-in” formalism and its applications to cosmology, see [41].) The

expectation value of an operator hOi to a given order n in perturbation theory is

hO(t)i =
X

n

(�i)n
Z t

�1
dt1 · · ·

Z tn�1

�1
dtn

⌦⇥⇥OI(t), HI(tn)
⇤
, · · · HI(t1)

⇤↵
, (16)

where the superscript I denotes that the operators are in the interaction picture, and HI is the

interaction Hamiltonian density,

HI =
1

4
�

�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
. (17)
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In this Hamiltonian we have included counterterms for the mass and curvature coupling, �m2

and �⇠, both of which are induced through RG e↵ects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

hh(t, ~x)h(t, ~y)i =
⌦
hI(t, ~x)hI(t, ~y)

↵

+ (�i)

Z t

�1
dtz

p
�g(tz)

Z
d3~z

⌦⇥
hI(t, ~x)hI(t, ~y),

1

4
�
�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
��

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.

Defining

⇢(x, y) = i
⌦⇥

hI(x), hI(y)
⇤↵

, F (x, y) =
1

2

⌦�
hI(x), hI(y)

 ↵
, (20)

we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
Z t

d4z a3(tz) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]
�
3�F (z, z) + �m2 + �⇠R(z)

�
,

(21)

with

F (x, y) =
1

2

Z
d3k

(2⇡)3
hk(tx)h

⇤
k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�

Z a⇤

⇤IR

d3k

(2⇡)3
|hk(tz)|2 (23)

= 3�

"
⇤2

8⇡2
+

H2

8⇡2
ln

"✓
a⇤

⇤IR

◆2
##

, (24)
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we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
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,
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k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�

Z a⇤

⇤IR

d3k

(2⇡)3
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FIG. 1. Sample Feynman diagrams included in our calculation of the Higgs two-point correlation

function. The first two graphs (labeled “Leading IR logs”) contribute to the late-time divergence

of the Higgs two point correlation
⌦
�h2(t)

↵
. The last three graphs do not directly contribute to the

leading divergence, but serve to renormalize the Higgs self-coupling �. The points x, y are assumed

to be separated by less than one Hubble length during inflation and the gauge boson propagators, for

reasons we explain in the text, include only the transverse degrees of freedom.

theory. We will find that computing these first two graphs reproduces the leading behavior that

we observed in the previous section. We will also argue that the other graphs do not contribute

to the leading divergence of the Higgs two-point correlation function. This observation will

allow us to connect our toy model to the SM.

To be explicit, we compute the two-point correlation function utilizing the “in-in” formal-

ism. (For a review of the “in-in” formalism and its applications to cosmology, see [41].) The

expectation value of an operator hOi to a given order n in perturbation theory is

hO(t)i =
X

n

(�i)n
Z t

�1
dt1 · · ·

Z tn�1

�1
dtn

⌦⇥⇥OI(t), HI(tn)
⇤
, · · · HI(t1)

⇤↵
, (16)

where the superscript I denotes that the operators are in the interaction picture, and HI is the

interaction Hamiltonian density,

HI =
1

4
�

�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
. (17)

13

In this Hamiltonian we have included counterterms for the mass and curvature coupling, �m2

and �⇠, both of which are induced through RG e↵ects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

hh(t, ~x)h(t, ~y)i =
⌦
hI(t, ~x)hI(t, ~y)

↵

+ (�i)

Z t
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p
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2
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��

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.

Defining
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, F (x, y) =
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, (20)

we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
Z t

d4z a3(tz) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]
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3�F (z, z) + �m2 + �⇠R(z)
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,

(21)

with

F (x, y) =
1

2

Z
d3k

(2⇡)3
hk(tx)h

⇤
k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�

Z a⇤

⇤IR

d3k

(2⇡)3
|hk(tz)|2 (23)
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In this Hamiltonian we have included counterterms for the mass and curvature coupling, �m2

and �⇠, both of which are induced through RG e↵ects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

hh(t, ~x)h(t, ~y)i =
⌦
hI(t, ~x)hI(t, ~y)

↵

+ (�i)

Z t

�1
dtz

p
�g(tz)

Z
d3~z

⌦⇥
hI(t, ~x)hI(t, ~y),

1

4
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hI(z)

�2
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2
�⇠R(z)
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��

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.

Defining

⇢(x, y) = i
⌦⇥

hI(x), hI(y)
⇤↵

, F (x, y) =
1

2
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hI(x), hI(y)

 ↵
, (20)

we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
Z t

d4z a3(tz) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]
�
3�F (z, z) + �m2 + �⇠R(z)
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,

(21)

with

F (x, y) =
1

2

Z
d3k

(2⇡)3
hk(tx)h

⇤
k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�

Z a⇤
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In this Hamiltonian we have included counterterms for the mass and curvature coupling, �m2

and �⇠, both of which are induced through RG e↵ects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

hh(t, ~x)h(t, ~y)i =
⌦
hI(t, ~x)hI(t, ~y)

↵

+ (�i)

Z t

�1
dtz

p
�g(tz)

Z
d3~z

⌦⇥
hI(t, ~x)hI(t, ~y),

1

4
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hI(z)
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+

1

2
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hI(z)

�2
+
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2
�⇠R(z)
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hI(z)

�2
��

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.

Defining

⇢(x, y) = i
⌦⇥

hI(x), hI(y)
⇤↵

, F (x, y) =
1

2

⌦�
hI(x), hI(y)

 ↵
, (20)

we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
Z t

d4z a3(tz) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]
�
3�F (z, z) + �m2 + �⇠R(z)
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,

(21)

with

F (x, y) =
1

2

Z
d3k

(2⇡)3
hk(tx)h

⇤
k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�

Z a⇤

⇤IR

d3k

(2⇡)3
|hk(tz)|2 (23)
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FIG. 1. Sample Feynman diagrams included in our calculation of the Higgs two-point correlation

function. The first two graphs (labeled “Leading IR logs”) contribute to the late-time divergence

of the Higgs two point correlation
⌦
�h2(t)

↵
. The last three graphs do not directly contribute to the

leading divergence, but serve to renormalize the Higgs self-coupling �. The points x, y are assumed

to be separated by less than one Hubble length during inflation and the gauge boson propagators, for

reasons we explain in the text, include only the transverse degrees of freedom.

theory. We will find that computing these first two graphs reproduces the leading behavior that

we observed in the previous section. We will also argue that the other graphs do not contribute

to the leading divergence of the Higgs two-point correlation function. This observation will

allow us to connect our toy model to the SM.

To be explicit, we compute the two-point correlation function utilizing the “in-in” formal-

ism. (For a review of the “in-in” formalism and its applications to cosmology, see [41].) The

expectation value of an operator hOi to a given order n in perturbation theory is

hO(t)i =
X

n

(�i)n
Z t

�1
dt1 · · ·

Z tn�1

�1
dtn

⌦⇥⇥OI(t), HI(tn)
⇤
, · · · HI(t1)

⇤↵
, (16)

where the superscript I denotes that the operators are in the interaction picture, and HI is the

interaction Hamiltonian density,

HI =
1

4
�

�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
. (17)

13

In this Hamiltonian we have included counterterms for the mass and curvature coupling, �m2

and �⇠, both of which are induced through RG e↵ects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

hh(t, ~x)h(t, ~y)i =
⌦
hI(t, ~x)hI(t, ~y)

↵

+ (�i)

Z t

�1
dtz

p
�g(tz)

Z
d3~z

⌦⇥
hI(t, ~x)hI(t, ~y),

1

4
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hI(z)

�4
+
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2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
��

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.

Defining

⇢(x, y) = i
⌦⇥

hI(x), hI(y)
⇤↵

, F (x, y) =
1

2

⌦�
hI(x), hI(y)

 ↵
, (20)

we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
Z t

d4z a3(tz) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]
�
3�F (z, z) + �m2 + �⇠R(z)

�
,

(21)

with

F (x, y) =
1

2

Z
d3k

(2⇡)3
hk(tx)h

⇤
k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�

Z a⇤

⇤IR

d3k

(2⇡)3
|hk(tz)|2 (23)
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where the IR cut-o↵ is taken to be ⇤IR = a0H, as in Sec. II. There are two types of terms

present in Eq. (24).5 First, there are the IR logarithms of the form log(a/a0) = N , due to

the superhorizon modes, that give rise to the divergence of the correlator h�h2i as observed

in the previous section. Second, there are terms due to UV physics, including quadratic and

logarithmic divergences. These terms are identical to terms that would be present in Minkowski

space, as the high-energy subhorizon modes only see the local spacetime (which appears flat)

and not the expansion. As such, these terms can be cancelled by local counterterms �m2, �⇠,

�m2 = �3�(µ)
⇤2

8⇡2
, 12�⇠ = �3�(µ)

4⇡2
log

✓
⇤2

µ2

◆
. (25)

As in Minkowski space, the UV divergences are accompanied by logarithms of the renormaliza-

tion scale and the energy scale H, log(µ2/H2). We have chosen a renormalization condition for

the mass-squared and non-minimal coupling such that the renormalized m2(µ) and ⇠(µ) vanish

at µ = H.

Putting the pieces together, the correction to the two-point correlation function goes as

3�F (z, z) + �m2 + �⇠R =
3�(µ)H2

8⇡2

✓
2N + ln

µ2

H2

◆
. (26)

The choice of renormalization scale resums the logarithms and ensures the theory remains

perturbatively under control in the UV—specifically, the logarithms vanish for the choice µ =

H, and the coupling is the RG-improved tree-level coupling �(µ = H). We note that the e↵ects

of the IR logarithms from higher-order corrections are also minimized by choosing µ = H. In

the remainder of the calculation, we will be focused on extracting the leading IR logarithms,

which determine the rate at which the two-point correlation diverges. First, though, we note

that this simple analysis suggests how contributions from additional Standard Model particles

are to be included. The contributions from loops of SM particles in the UV are shown as the

“subleading IR logs” diagrams in Fig. 1. Loops of transverse gauge bosons and fermions actively

renormalize the coupling �(µ) from the UV cut-o↵ of the theory ⇤ down to µ = H. At scales

below µ = H, however, the propagators of these fields do not have logarithmic divergences

5 We have dropped exponentially suppressed terms that go as ⇤
IR

/aH.
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FIG. 1. Sample Feynman diagrams included in our calculation of the Higgs two-point correlation

function. The first two graphs (labeled “Leading IR logs”) contribute to the late-time divergence

of the Higgs two point correlation
⌦
�h2(t)

↵
. The last three graphs do not directly contribute to the

leading divergence, but serve to renormalize the Higgs self-coupling �. The points x, y are assumed

to be separated by less than one Hubble length during inflation and the gauge boson propagators, for

reasons we explain in the text, include only the transverse degrees of freedom.

theory. We will find that computing these first two graphs reproduces the leading behavior that

we observed in the previous section. We will also argue that the other graphs do not contribute

to the leading divergence of the Higgs two-point correlation function. This observation will

allow us to connect our toy model to the SM.

To be explicit, we compute the two-point correlation function utilizing the “in-in” formal-

ism. (For a review of the “in-in” formalism and its applications to cosmology, see [41].) The

expectation value of an operator hOi to a given order n in perturbation theory is

hO(t)i =
X

n

(�i)n
Z t

�1
dt1 · · ·

Z tn�1

�1
dtn

⌦⇥⇥OI(t), HI(tn)
⇤
, · · · HI(t1)

⇤↵
, (16)

where the superscript I denotes that the operators are in the interaction picture, and HI is the

interaction Hamiltonian density,

HI =
1

4
�

�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)
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hI(z)

�2
. (17)
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In this Hamiltonian we have included counterterms for the mass and curvature coupling, �m2

and �⇠, both of which are induced through RG e↵ects (see, for example, [19]). Our renormal-

ization conditions will fix these quantities at µ = H.

At next-to-leading order (i.e., including n = 0, 1 contributions), we thus have

hh(t, ~x)h(t, ~y)i =
⌦
hI(t, ~x)hI(t, ~y)

↵

+ (�i)

Z t
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dtz

p
�g(tz)

Z
d3~z

⌦⇥
hI(t, ~x)hI(t, ~y),

1

4
�
�
hI(z)

�4
+

1

2
�m2

�
hI(z)

�2
+

1

2
�⇠R(z)

�
hI(z)

�2
��

, (18)

where R is the Ricci scalar,

R = 12H2, (19)

in dS spacetime. The n = 0 contribution corresponds to the first graph in Fig. 1 and the n = 1

contribution corresponds to the second graph in Fig. 1.
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we have

hh(t, ~x)h(t, ~y)i = F (x, y) �
Z t

d4z a3(tz) [F (x, z)⇢(y, z) + ⇢(x, z)F (y, z)]
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3�F (z, z) + �m2 + �⇠R(z)

�
,
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2
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hk(tx)h
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k(ty)e

i~k·(~x�~y) + c.c. (22)

Let us start by calculating the scalar loop contribution to the correlator, encoded in the

function F (z, z) and shown in the second diagram of Fig. 1. Using the mode functions for a

massless mode in dS space, Eq. (9), we have

3�F (z, z) = 3�
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where the IR cut-o↵ is taken to be ⇤IR = a0H, as in Sec. II. There are two types of terms

present in Eq. (24).5 First, there are the IR logarithms of the form log(a/a0) = N , due to

the superhorizon modes, that give rise to the divergence of the correlator h�h2i as observed

in the previous section. Second, there are terms due to UV physics, including quadratic and

logarithmic divergences. These terms are identical to terms that would be present in Minkowski

space, as the high-energy subhorizon modes only see the local spacetime (which appears flat)

and not the expansion. As such, these terms can be cancelled by local counterterms �m2, �⇠,

�m2 = �3�(µ)
⇤2

8⇡2
, 12�⇠ = �3�(µ)

4⇡2
log

✓
⇤2

µ2

◆
. (25)

As in Minkowski space, the UV divergences are accompanied by logarithms of the renormaliza-

tion scale and the energy scale H, log(µ2/H2). We have chosen a renormalization condition for

the mass-squared and non-minimal coupling such that the renormalized m2(µ) and ⇠(µ) vanish

at µ = H.

Putting the pieces together, the correction to the two-point correlation function goes as

3�F (z, z) + �m2 + �⇠R =
3�(µ)H2

8⇡2

✓
2N + ln

µ2

H2

◆
. (26)

The choice of renormalization scale resums the logarithms and ensures the theory remains

perturbatively under control in the UV—specifically, the logarithms vanish for the choice µ =

H, and the coupling is the RG-improved tree-level coupling �(µ = H). We note that the e↵ects

of the IR logarithms from higher-order corrections are also minimized by choosing µ = H. In

the remainder of the calculation, we will be focused on extracting the leading IR logarithms,

which determine the rate at which the two-point correlation diverges. First, though, we note

that this simple analysis suggests how contributions from additional Standard Model particles

are to be included. The contributions from loops of SM particles in the UV are shown as the

“subleading IR logs” diagrams in Fig. 1. Loops of transverse gauge bosons and fermions actively

renormalize the coupling �(µ) from the UV cut-o↵ of the theory ⇤ down to µ = H. At scales

below µ = H, however, the propagators of these fields do not have logarithmic divergences

5 We have dropped exponentially suppressed terms that go as ⇤
IR

/aH.
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at late time and hence do not contribute to the divergent part of h�h2i—we elaborate on this

point further below.

The leading term in Eq. (21) is

F (t, ~x; t, ~y) =
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+
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, (27)

⇡ H2

4⇡2
N (28)

with r = |~x � ~y| evaluated at r ⇡ (aH)�1, keeping the leading IR logarithm. The leading IR

logarithm due to second term of Eq. (21) is

� 3�
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h
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i
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24⇡2
H2N 3. (29)

We can compare this with the result of Eq. (13), expanded in the limit of
p��N ⌧ 1,

⌦
�h2(t)

↵
HF

⇡ H2

4⇡2
N � �H2

24⇡4
N 3. (30)

The two results agree, consistent with the claim that the HF approach resums the leading IR

logarithms that arise in perturbation theory.6

We see that perturbation theory breaks down (signaled by the subleading term exceeding

the tree-level term) after a critical number of e-folds

N > ⇡

s
6

|�| ⌘ Nc⇠> Nmax. (31)

Although we have only calculated the breakdown of perturbation theory at leading order, we

can see that the result is consistent with Nmax derived from Eq. (13). In addition, for � < 0,

the subleading term gives a positive contribution to h�h2(t)i, further supporting the claim that

the correlator diverges in finite time.7

6 A similar analysis has been done in Refs. [39, 40] using the stochastic approach.
7 The perturbative calculation also breaks down in finite time for � > 0. This corresponds to the fluctuations

approaching a stabilized, equilibrium solution [26]—this solution is also apparent in the late-time limit of

Eq. (13) with � > 0.
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A CONSISTENT STORY

➤ Equivalent to expansion of      

with coupling renormalized at 
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Now, consider the evolution of h�h2(t)i assuming that

|�| ⌦�h2(t)
↵ ⌧ H2. (8)

In this case, modes are e↵ectively massless, yielding the usual result in dS space

�hk(t) =
Hp
2k3

✓
1 � i

k

aH

◆
ei

k
aH . (9)

For the slowly-varying superhorizon modes with 1/L  k  ✏aH, we can employ the slow-roll

approximation and neglect the gradient term such that

3H ˙�hk(t) + 3�
⌦
�h2(t)

↵
�hk(t) = 0. (10)

The evolution equation for h�h2(t)i can be found by multiplying by �h⇤
k(t) and integrating over

superhorizon modes. The derivative term is simplified using
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4⇡2
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We pick up a stochastic or Brownian noise term as a result of the time-dependence of mode

horizon crossing. This derivation is one method by which to obtain the well-known result that

de Sitter space behaves thermally. The equation governing the evolution of h�h2(t)i is then

d

dt

⌦
�h2(t)

↵
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H
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↵2
+

H3
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The solution to this equation is

⌦
�h2(t)

↵
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1p�2�

H2
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✓p�2�
N
2⇡

◆
(13)

where N = Ht is the number of e-folds of inflation. While we have written the result as for

� < 0, it is equally valid for � > 0 (with the tangent function replaced by a hyperbolic tangent).

There are several notable features of Eq. (13). First, in the limit of � ! 0, we obtain the

familiar result for a massless field in dS space

⌦
�h2(t)

↵
=

H2N
4⇡2

. (14)
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IMPLICATION FOR THE END OF THE STORY — OUR UNIVERSE?

➤ Depends on whether a patch falling to the true vacuum 
expands outwards, or not 

➤ If patch expands outwards, then a single patch in the past 
light cone is disastrous; so need              good patches

Tails are important!

e3N0

FIG. 7. Left panel: The maximum number of e-folds that inflation can proceed without the formation
of a true vacuum patch Nmax as a function of H/⇤max. Right panel: Probability distribution of the
Higgs field after N = 50 e-folds for H/⇤max = 0.065. In both cases, the full FP treatment is compared
to other approaches.

reheating [22], but this implies a condition on post-inflationary cosmology. If reheating is not

su�ciently e�cient to drive these patches back to the electroweak vacuum, they will ultimately

classically evolve to the true vacuum, which would still prove disastrous for our Universe. Thus,

we can also consider the more stringent requirement that no patches in our past lightcone

fluctuate beyond the maximum of the potential during inflation. In this case, we find

H

⇤max
⇠< 0.062 ) no patches with |h| > ⇤max form during inflation. (15)

These are our main results, and represent the most accurate constraints on H in the presence

of a SM vacuum instability.

We present these results in the (mh,mt) plane in Fig. 8, taking the maximally-conservative

upper limit on the inflationary Hubble scale subject to the requirement Nmax � 60 (solid) or

Nmax � 50 (dashed). The limit on H/⇤max varies non-trivially with b0, as can be seen in Fig. 9.

Larger b0, which corresponds to larger mt for a given mh, generates a more positive quartic and

greater stabilizing e↵ect for small fluctuations, but also more rapid growth of larger fluctuations

for which the quartic is more negative. As such, the variation in the limit depends on which

e↵ect dominates. Interestingly, the limit is approximately strongest for the value of b0 favored
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DOES A BAD PATCH EXPAND?

➤ Normal intuition is that a true vacuum expands outwards 

➤ Here, though, the true vacuum is crunching; also potential 
energy from potential is liberated as the field enters the true 
vacuum
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DOES A BAD PATCH EXPAND?

FIG. 2. An unstable Higgs field fluctuation falling to the true vacuum. We show, left to right, top
to bottom: the Higgs field value, energy density, local Hubble expansion rate (H = �3K) and local
number of e-folds of expansion as a function of radius and time. Results correspond to an initially-
spatially-Gaussian fluctuation with R = RH and hin = 2hc, and potential with Vmin/⇤Infl = �100 and
hmin/MP = 0.1. The dotted black line indicates the surface of the apparent horizon that forms during
the evolution, while the white space indicates the region behind the apparent horizon that is excised
from the domain in order to continue the simulation.

values in the bottom-right panel) from outside observers. Note that the white space in the

plots indicates regions inside the apparent horizon that are excised in order to continue the

simulations.
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DOES A BAD PATCH EXPAND?

➤ True vacuum patch formation is initially spacelike

FIG. 3. Evolution of the size of a large Higgs fluctuation and resulting region of true vacuum in de
Sitter (black lines) and Minkowski (blue lines) space. The left panel shows the outermost radius in
planar coordinates (hence a factor of exp(tH) should be applied to obtain the proper radius), where
the Higgs field equals hin/2 (roughly the radius of initial fluctuation; solid lines) and where the Higgs
field equals hmin/2 (roughly the radius of the true vacuum patch; dotted lines), as a function of time.
The right panel shows proper length squared per time squared ds2/dt2 of these curves. The potential
has VminR

2/3 = 100 and hmin = 0.1. The initial fluctuation has a compactly supported spatial profile
given by Eq. (9) (the transient behavior at early times being an artifact of this particular choice).

out by the Higgs fluctuation and the bubble of true vacuum (blue lines) both approach being

null. However, in de Sitter space, the exponential expansion eventually dominates, and the

edge of the Higgs fluctuation quickly becomes causally disconnected from the bubble of true

vacuum. This implies that the growth of the true vacuum region is insensitive to the behavior

of the spacetime in the interior region and the details of the Higgs potential near hmin.

Similar results are also obtained for spatially Gaussian fluctuations, which we show in Fig. 4.

It should be noted that the location of the boundary of the fluctuation is less well defined in

this case (and the boundary region is also being expanded out of casual contact as seen in

the left panel at late times). This plot demonstrates that the exact parameters of the Higgs

potential near its minimum make little di↵erence to the growth. Finally, we note that while a

region of true vacuum can become exponentially large during the de Sitter phase, it of course

cannot extend past the cosmological horizon of the initial Higgs fluctuation that gave rise to it.

So, the creation of a single unstable fluctuation cannot globally terminate inflation. However,
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NON-SPHERICAL CONFIGURATIONS

➤ Black Holes and the Hoop Conjecture 

➤ Region of mass M will create black hole iff a “hoop” of 
circumf.            can be passed over region in every direction 

➤ Manifestly violated here

FIG. 6. The proper equatorial (left panel) and poloidal (right panel) circumferences of the apparent
horizons that form from large Higgs field fluctuations (beginning from when they are first found in the
domain) with various aspect ratios Rz/Rxy. We also show the equatorial circumference of a case with
z-translational symmetry (Rz/Rxy = 1) where the horizon has cylindrical topology. The polodial
circumference is normalized by the horizon mass MAH to show how far above the hoop conjecture
criterion C⇠< 4⇡MAH it is in each case.

To demonstrate this, we consider a series of increasingly elongated Gaussian field configu-

rations. We fix the radius in the equatorial plane, Rxy = RH , and consider cases with larger

and larger extent along the symmetry axis, Rz/Rxy = 1, 2, 4, and 8. In all cases we find that

an apparent horizon does form soon after the Higgs fluctuation reaches the true vacuum. As

shown in Fig. 6, the proper equatorial circumference Ceq of the horizon evolves in a similar

manner for all cases, indicating that the narrow “waist” of the Higgs fluctuation and resulting

black hole is not sensitive to the longer direction. The poloidal circumference Cp does, however,

increase with the increasing aspect ratio, and it increases faster than the mass of the horizon

MAH (measured from its proper area), giving larger and larger violations of the hoop conjecture

criterion.

Although configurations with larger aspect ratios become increasingly di�cult to track nu-

merically, we can also consider the infinite Rz/Rxy case by evolving a spacetime with an enforced

translational symmetry in the z-direction.4 We find that a horizon also forms in this case, now

with cylindrical topology, i.e., a black string. From Fig. 6 we can see that the evolution of

4For this one case, we use periodic boundary conditions in the x and y directions, though with the boundary at

large enough distances so as to be insignificant to the results shown here.
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FIG. 5. The Higgs field fluctuations as a function of radius (in planar coordinates, rp) and time for
the evolution of an initial fluctuation that is an elliptical Gaussian with Rz = 2Rxy = RH . The left
panel shows the field in the equatorial plane, while the right panel shows the field on the symmetry
axis. Except for the absence of spherical symmetry, the parameters in this case are the same as the
ones shown in Fig. 2, and the evolution proceeds in a similar manner.

observations from the previous subsections also apply to non-spherical configurations.

More interestingly, we find that there are significant di↵erences between the large Higgs

fluctuation cases we study here—which produce regions of negative energy density—and space-

times that satisfy standard energy conditions. In particular, for four-dimensional spacetimes

with positive energy, black hole apparent horizons are found to always have spherical topol-

ogy [34, 35]. Furthermore, it has been found that, geometrically, black holes cannot be arbi-

trarily elongated. The latter condition is encapsulated in the hoop conjecture [27], which states

that a region containing a mass M will form a black hole with attendant horizon if and only if

a “hoop” of circumference 4⇡M can be passed over the region in every direction. For example,

the collapse of an infinite cylinder will not form a horizon, but instead create a naked singular-

ity. Crucially, these restrictions do not apply to AdS spacetimes, which can develop cylindrical

black holes [36, 37]. Analogously, we find that they also do not apply in our study of Higgs

fluctuations because the regions in which the Higgs field diverges to the true vacuum evolve

into regions with negative potential energy, allowing for the formation of arbitrarily-elongated

black holes.
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A TECHNICAL SIDE STORY

FIG. 7. Left panel: The maximum number of e-folds that inflation can proceed without the formation
of a true vacuum patch Nmax as a function of H/⇤max. Right panel: Probability distribution of the
Higgs field after N = 50 e-folds for H/⇤max = 0.065. In both cases, the full FP treatment is compared
to other approaches.

reheating [22], but this implies a condition on post-inflationary cosmology. If reheating is not

su�ciently e�cient to drive these patches back to the electroweak vacuum, they will ultimately

classically evolve to the true vacuum, which would still prove disastrous for our Universe. Thus,

we can also consider the more stringent requirement that no patches in our past lightcone

fluctuate beyond the maximum of the potential during inflation. In this case, we find

H

⇤max
⇠< 0.062 ) no patches with |h| > ⇤max form during inflation. (15)

These are our main results, and represent the most accurate constraints on H in the presence

of a SM vacuum instability.

We present these results in the (mh,mt) plane in Fig. 8, taking the maximally-conservative

upper limit on the inflationary Hubble scale subject to the requirement Nmax � 60 (solid) or

Nmax � 50 (dashed). The limit on H/⇤max varies non-trivially with b0, as can be seen in Fig. 9.

Larger b0, which corresponds to larger mt for a given mh, generates a more positive quartic and

greater stabilizing e↵ect for small fluctuations, but also more rapid growth of larger fluctuations

for which the quartic is more negative. As such, the variation in the limit depends on which

e↵ect dominates. Interestingly, the limit is approximately strongest for the value of b0 favored
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Need to resolve tails of distribution to obtain correct constraint



IMPLICATIONS FOR OUR UNIVERSE
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FIG. 8. Limits on H [GeV] (black contours) in the (mh,mt) plane requiring Nmax � 60 (solid) or 50
(dashed). Central values are taken to be mh = 125.09 ± 0.24 GeV [40] and mt = 172.44 ± 0.70 GeV
[41], with contours corresponding to 1-, 2-, and 3-� regions as for two parameters. The shaded regions
represent: the Higgs potential is stable up to MP (green); the Higgs potential is unstable, but current
limits r < 0.07 [45] permit required amount of inflation (blue); and instability would preclude the
combination of Nmax > 60 and r > 0.002, to be probed by near-future experiments [10] (red).

by the central (mh,mt) values. However, this limit depends only weakly on b0 throughout the

SM parameter space, ranging between 0.06⇠< H
⇤
max

⇠< 0.11 for 0.01
(4⇡)2 ⇠< b0⇠< 0.40

(4⇡)2
and Nmax = 60.

Hence, the bounds on H are mainly driven by how ⇤max varies with (mh,mt) and, for a given

mh, the rapid decrease in ⇤max with increasing mt results in significantly more stringent limits

on H.

The region in which the Higgs potential is stable up to the Planck scale is shown in green,

while the region in blue corresponds to where the potential is unstable, but current limits on

r < 0.07 [45] permit the Universe to exit inflation without producing a patch of true vacuum.
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If one observes primordial B-modes either 
(a) the Higgs has stabilizing corrections, or 

(b) the top mass must come down



WHAT HAVE WE LEARNED?

➤ The presence of a SM Higgs boson vacuum instability 
provides an ideal laboratory for considering novel aspects of 
scalar field evolution in inflation 

➤ single vs multi-bounce (HM vs FP) 

➤ interacting field in an inflating background; scale and gauge 
dependence 

➤ evolution of AdS bubble with thick wall 

➤ test of Hoop conjecture 

➤ observation of primordial B-modes may tell us something about the 
nature of the Higgs potential at large field values


