GRB Beaming and Gravitational-Wave Observations

Hsin-Yu Chen¹ Daniel E. Holz²

¹Department of Astronomy and Astrophysics, University of Chicago

²Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics, University of Chicago

22nd Midwest Relativity Meeting, 2012

(本間) (本語) (本語)

Beaming angles limit from event rates limit...

- Compact binary coalescences rates upper limit:
 - Non-detection from LIGO S6/VSR2 established upper limits on the event rates in local Universe (Abadie et al. 2011).
- Short GRB beaming angles lower limit:
 - Fraction of sky covered by beamed gamma rays:
 - $f_b = 1 \cos \theta_i$
 - Apply observed rate density of GRB: $\mathcal{P} = \mathcal{P}$ (1 cos 4)
 - $\mathcal{R} = \mathcal{R}_{\text{GRB}}/I_b = \mathcal{R}_{\text{GRB}}/(1 \cos\theta_j).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Beaming angles limit from event rates limit...

- Compact binary coalescences rates upper limit:
 - Non-detection from LIGO S6/VSR2 established upper limits on the event rates in local Universe (Abadie et al. 2011).
- Short GRB beaming angles lower limit:
 - Fraction of sky covered by beamed gamma rays:
 - $f_b = 1 \cos \theta_j$.
 - Apply observed rate density of GRB: $\mathcal{R} = \mathcal{R}_{GRB}/f_b = \mathcal{R}_{GRB}/(1 - \cos \theta_j).$

ヘロン 人間 とくほ とくほ とう

Beaming angles limit from event rates limit...

- Compact binary coalescences rates upper limit:
 - Non-detection from LIGO S6/VSR2 established upper limits on the event rates in local Universe (Abadie et al. 2011).
- Short GRB beaming angles lower limit:
 - Fraction of sky covered by beamed gamma rays:
 - $f_b = 1 \cos \theta_j.$
 - Apply observed rate density of GRB:
 - $\mathcal{R} = \mathcal{R}_{\text{GRB}}/f_b = \mathcal{R}_{\text{GRB}}/(1 \cos \theta_j).$

イロト イ押ト イヨト イヨトー

Short GRB Beaming Angles Limit

Assumed $\mathcal{R}_{GRB} = 10 \, \text{Gpc}^{-3} \text{yr}^{-1}$, $\theta_j \ge 1^\circ$ for NS-NS, and $\theta_j \ge 4^\circ$ for NS-BH($\sim 20 M_{\odot}$).

Improve expected detection rates:

- Higher sensitivity: high laser power, seismic isolation.
- Detector network: LIGO-India, KAGRA (~2020).
- Beamed GRB: expected rates is improved by 7 times if $\theta_j \sim 30^\circ$, 60 times if $\theta_j \sim 10^\circ$.

Network
$$\theta_j = 10^\circ$$
 $\theta_j = 30^\circ$ $\theta_j = 90^\circ$ [conservative]HL(no SRM)15/yr1.7/yr0.23/yrHLV50/yr5.6/yr0.75/yr[optimistic]HLVJI104/yr12/yr1.6/yr

・ 回 ト ・ ヨ ト ・ ヨ ト

Improve expected detection rates:

- Higher sensitivity: high laser power, seismic isolation.
- Detector network: LIGO-India, KAGRA (~2020).
- Beamed GRB: expected rates is improved by 7 times if $\theta_j \sim 30^\circ$, 60 times if $\theta_j \sim 10^\circ$.

	Network	$ heta_i = 10^\circ$	$ heta_i = 30^\circ$	$\theta_i = 90^\circ$
[conservative]	HL(no SRM)	15/yr	1.7/yr	0.23/yr
	HLV	50/yr	5.6/yr	0.75/yr
[optimistic]	HLVJI	104/yr	12/yr	1.6/yr

・ 回 ト ・ ヨ ト ・ ヨ ト

Pros and cons of triggered detections

Pros

-lower SNR threshold due to known time and sky location. -higher SNR due to almost on-axis detection.

Con

-Only on-axis GRBs/binaries are observed.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Pros and cons of triggered detections

Pros

-lower SNR threshold due to known time and sky location. -higher SNR due to almost on-axis detection.

Con

-Only on-axis GRBs/binaries are observed.

イロト イポト イヨト イヨト 三日

- Pros and cons of triggered detections
 - Pros

-lower SNR threshold due to known time and sky location. -higher SNR due to almost on-axis detection.

Con

-Only on-axis GRBs/binaries are observed.

ヘロト ヘアト ヘビト ヘビト

Expected Detection Rates

We expect to have a few or more untriggered detections per year in the near juture!

Hsin-Yu Chen, Daniel E. Holz GRB Beaming and Gravitational-Wave Observations

Expected Detection Rates

We expect to have a few or more untriggered detections per year in the near future!

Hsin-Yu Chen, Daniel E. Holz GRB Beaming and Gravitational-Wave Observations

Binary Mergers Event Rates Limit

Hsin-Yu Chen, Daniel E. Holz GRB Beaming and Gravitational-Wave Observations

- Coincident to Coherent Search
 - Find effective SNR threshold if applied coherent search (Schutz 2011):ρ_{network} ~ 10.7–12.2.
 - NS-BH: $4.5 \times 10^{-4} \,\mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$ for $M_{total} \sim 3 \,M_{\odot}$, and $6.5 \times 10^{-5} \,\mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$ for $M_{total} \sim 22 \,M_{\odot}$.

(同) くほり くほう

E

Network	$V_0(\text{Gpc}^3)$	$\theta_j = 10^\circ$	$ heta_{j} = 30^{\circ}$	$\theta_i = 90^\circ$
HL(no SRM)	0.027	15/yr	1.7/yr	0.23/yr
HLV(no SRM)	0.046	26/yr	2.9/yr	0.39/yr
HLV	0.092	50/yr	5.6/yr	0.75/yr
HLVJ	0.14	74/yr	8.4/yr	1.1/yr
HLVI	0.14	77/yr	8.7/yr	1.2/yr
HLVJI	0.19	104/yr	12/yr	1.6/yr

Table: Mean detectable volume and expected detection rates (per year) for $1.4 M_{\odot}$ -1.4 M_{\odot} binaries.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Observed GRB Beaming Angles

(Nicuesa Guelbenzu et al. arXiv:1206.1806)

э

э