Black hole entropy of gauge fields

William Donnelly (University of Waterloo) with Aron Wall (UC Santa Barbara)

September 29th, 2012

William Donnelly (UW)

Black hole entropy of gauge fields

September 29th, 2012

Black holes possess an entropy given by the Bekenstein-Hawking formula:

$$S_{\rm BH} = rac{Ac^3}{4G\hbar}.$$

Can be inferred macroscopically.

- From the Hawking temperature $T_{\rm H} = \frac{\hbar}{2\pi}\kappa$ and the first law of black hole mechanics $\delta E = T_{\rm H}\delta S_{\rm BH}$.¹
- From a saddle point evaluation of the Euclidean partition function.²

But the statistical meaning of S_{BH} is not clear.

What is the statistical mechanics of black hole thermodynamics?

¹Hawking 1975

²Gibbons & Hawking 1977

The black hole horizon also has an entanglement entropy.³ We have a tensor product decomposition, and partial trace

$$\mathcal{H} = \mathcal{H}_{in} \otimes \mathcal{H}_{out}, \qquad
ho_{out} = \operatorname{tr}_{in} |\psi \rangle\!\langle \psi | \,.$$

The entropy of ρ_{Ω} is the entanglement entropy:

$$S_{\text{ent}} = -\operatorname{tr} \rho_{\text{out}} \ln \rho_{\text{out}}.$$

Statistical meaning: entropy comes from missing correlations due to inaccessible black hole interior.

How is this related to the macroscopic quantity S_{BH} ?

³Sorkin 1983; Bombelli, Koul, Lee, & Sorkin 1986; Srednicki 1993 📳 🔬 🔅

To relate S_{BH} and S_{ent} , we use the conical method.⁴

For simplicity we consider a Rindler horizon.

Let $Z(\beta)$ be the Euclidean path integral on a cone of angle β , times D-2 flat and compact transverse directions.

$$Z = \int \mathcal{D}\phi \, e^{-S[\phi]}$$
$$S_{\text{cone}} \equiv \left(1 - \beta \frac{\partial}{\partial \beta}\right) \ln Z \Big|_{\beta = 2\pi}$$

This **conical entropy** is equivalent to varying the period at ∞ .

Strategy: Compute S_{cone} in effective theory, and in the quantum theory.

Suppose we integrate out the matter fields, leading to an effective action

$$\int \mathcal{D}\phi e^{-S[\phi]} = e^{-\int \sqrt{g} L_{\text{eff}}}, \qquad L_{\text{eff}} = \frac{1}{16\pi G_{\text{eff}}} (R - 2\Lambda_{\text{eff}} + \ldots)$$

The conical entropy formula gives the Bekenstein-Hawking formula ⁵

$$S_{\text{cone}} = rac{A}{4G_{ ext{eff}}} = S_{ ext{BH}}.$$

In terms of the **effective** Newton's constant, G_{eff} .

•

⁵Susskind & Uglum 1994; Jacobson 1994

Relating S_{cone} and S_{ent}

Now consider evaluating the entropy in the quantum theory.

The Minkowski vacuum $|0\rangle$ restricted to one Rindler wedge is thermal in the boost generator $K:^6$

$$ho_R \equiv \operatorname{tr}_L |0
angle \langle 0| = rac{e^{-2\pi K}}{Z(2\pi)},$$
 $Z(eta) \equiv \operatorname{tr} e^{-eta K}.$

Varying β is equivalent to varying the temperature of a thermal state:

$$S_{\rm cone} \equiv \left(1 - \beta \frac{\partial}{\partial \beta}\right) \ln Z \bigg|_{\beta = 2\pi} = -\operatorname{tr} \rho_R \ln \rho_R = S_{\rm ent}.$$

⁶Bisognano & Wichmann 1975

Not so fast!

The conical geometry also has a singular curvature at the tip:⁷

$$R_{abcd}(x) = (2\pi - \beta)\epsilon_{ab}\epsilon_{cd}\delta_{\Sigma}(x).$$

Nonminimally coupled matter interacts with this curvature.

The contribution to the conical entropy coming from the tip is:

$$\langle S_{\mathsf{Wald}}
angle = -2\pi \int_{\Sigma} \sqrt{h} \left\langle \frac{\partial L}{\partial R_{\mathsf{abcd}}} \right\rangle \epsilon_{\mathsf{ab}} \epsilon_{\mathsf{cd}}.$$

This term is the contribution of the matter fields to the Wald entropy.⁸ Thus for nonminimally coupled matter,⁹

$$S_{\rm BH} = S_{\rm ent} + \left< S_{\rm Wald} \right>$$
 .

⁷Fursaev & Solodukhin 1995

⁸Wald 1993; Visser 1993; Jacobson, Kang & Myers 1993

⁹As suggested by arguments in Frolov & Fursaev 1997 ← □ → ← ∂ →

One loop results

The conical entropy has been calculated for free fields of spin \leq 2,

$$S_{
m cone} = A \; c_1 \; \left(2\pi \int_{\epsilon^2}^\infty ds rac{e^{-m^2 s}}{(4\pi s)^{D/2}}
ight).$$

 c_1 depends on the field and N, the number of on-shell degrees of freedom¹⁰

Spin	Field	N	<i>c</i> ₁
0	Nonminimally coupled scalar	1	$\frac{N}{6}-\xi$
$\frac{1}{2}$	Dirac spinor	$2^{\left\lfloor \frac{D}{2} \right\rfloor - 1}$	$\frac{N}{6}$
$ \bar{1}$	Maxwell field	D - 2	$\frac{N}{6} - 1$
$\frac{3}{2}$	Rarita-Schwinger field	$(D-3)2^{\left\lfloor \frac{D}{2} \right\rfloor-1}$	$\frac{N}{6}$
2	Graviton	$\frac{D(D-3)}{2}$	$\left \frac{\tilde{N}}{6} - \frac{D^2 - D + 4}{2} \right $

For gauge fields there is a mysterious contact term.¹¹

Electromagnetic field

For the electromagnetic field the Lagrangian is

$$L = \frac{1}{4} F^{ab} F_{ab}, \qquad \Rightarrow \qquad \text{expect} \quad S_{\text{Wald}} = 0.$$

We add ghosts c and \bar{c} , a gauge fixing term, and integrate by parts:

$$L'=-\frac{1}{2}A^{a}(g_{ab}\nabla^{2}-R_{ab})A^{b}-\bar{c}\nabla^{2}c.$$

The Wald entropy contribution from the gauge field is:

$$\langle S_{\text{Wald}}
angle = -\pi \int_{\Sigma} \sqrt{h} \, g_{\perp}^{ab} \left\langle A_a A_b \right\rangle.$$

Evaluated using the heat-kernel regularization it gives $c_1 = -1$.

Problem: Gauge invariance? What about D = 2, where there are no local degrees of freedom?

Compact spacetime

We now consider D = 2 and compactify (e.g. 2D de Sitter). In 2D, any vector field can be written as

$$A = d\phi + \delta\psi + B, \qquad \Delta B = 0$$

The vector field cancels with the ghosts up to zero modes.

The number of zero modes (vector minus two ghosts) is $2g - 2 = -\chi$, where χ is the Euler characteristic.

Using Gauss-Bonnet, we can write $\chi = \frac{1}{4\pi} \int \sqrt{g} R$.

Zero mode contribution to the effective action is proportional to $\int \sqrt{g} R$

$$S_{
m zero\ modes} = -\left(2\pi\int_{\epsilon^2}^\infty ds rac{e^{-m^2s}}{(4\pi s)^{D/2}}
ight).$$

The $c_1 = -1$ in the conical entropy comes from **zero modes**.

Heat kernel method *does not* treat zero modes properly.

2D gauge theory has a huge symmetry group: area-preserving diffeomorphisms. It is "almost topological" and can be solved exactly:¹²

$$Z = \sum_{E \in q\mathbb{Z}} e^{-\frac{1}{2}VE^2}$$

Since $V \propto eta$, the conical entropy is

$$S_{\text{cone}} = \left(1 - V \frac{\partial}{\partial V}\right) \ln Z = -\sum_{E} p_E \ln p_E = S_{\text{ent}}.$$

This is finite, positive, and equal to the entanglement entropy. One can show that $S_{cone} = S_{ent}$ for 2D Yang-Mills as well.

¹²Witten 1991

Conclusion

Conclusions:

• Black hole entropy is closely related to entanglement entropy

$$S_{\mathrm{BH}} = S_{\mathrm{ent}} + \left< S_{\mathrm{Wald}} \right>.$$

• But the "contact term" in the entropy of gauge fields can't be explained this way; it is absent when the partition function is evaluated carefully (in D = 2).

Future work:

- Gauge theories in D > 2.
- Linearized gravity.

For details see arXiv:1206.5831.

Thank you.