Quantum corrections to the gravitationally coupled magnetic monopole: residual conformal symmetry and trace anomaly

Ariel Edery Bishop's University (work partly completed at KITP, Santa Barbara)

Noah Graham Middlebury College

22nd Midwest Relativity Meeting, University of Chicago

Conformally Invariant Action

$$S = \int d^4x \sqrt{-g} \left(C_{\mu\nu\sigma\tau} C^{\mu\nu\sigma\tau} - \frac{1}{4e^2} F^a_{\mu\nu} F^{\mu\nu}_a + D_\mu \phi^a D^\mu \phi_a + \frac{1}{6} R \phi^a \phi_a - \lambda^2 (\phi^a \phi_a)^2 \right)$$

Invariant under: $g_{\mu\nu} \to \Omega^2(x) g_{\mu\nu} \qquad \phi^a \to \Omega^{-1}(x) \phi^a$

Note: no "mass term" $\mu^2 \Phi^2$. Replaced by R Φ^2 term. -> Spontaneous symmetry breaking (SSB) via gravitation.

VEV:
$$\phi_0^2 = \frac{R}{12\lambda^2}$$
 AdS background, R=positive constant

It was shown that this allows for a magnetic monopole solution with Schwarzschild-AdS spacetime asymptotically.

SSB does not introduce a length scale

Spontaneous symmetry breaking (SSB) breaks the conformal symmetry but only partially.

$$g_{\mu\nu} \to \Omega^2(x)g_{\mu\nu} \quad ; \quad \phi_0 \to \frac{\phi_0}{\Omega(x)} \quad ; \quad R \to \frac{R}{\Omega^2(x)} + \frac{6}{\Omega^3(x)} \square \Omega(x)$$

conformal transformations obeying the condition $\Box \Omega(x) = 0$ leave vacuum invariant.

- dilatations (global scale invariance): $x^{\mu} \to x'^{\mu} = \beta x^{\mu}$ obeys above condition -> no length scale

-special conformal transformations: $x^{\mu} \rightarrow x'^{\mu} = \frac{x^{\mu} + a^{\mu} x^2}{1 + 2 a_{\beta} x^{\beta} + a^2 x^2}$ obeys condition if $a^2 = a^{\mu} a_{\mu} = 0$

* vacuum invariant under 14 parameter subgroup

Quantum corrections introduce a length scale

One loop divergent part of effective action

$$W_{div} = \frac{1}{n-4} \int d^4x \sqrt{g} \operatorname{tr} \hat{a}_2(x,x) \qquad (n \to 4)$$

Schwinger-Dewitt coefficient

$$\hat{a}_2(x,x) = \frac{1}{180} \Big(R_{\mu\nu\sigma\tau} R^{\mu\nu\sigma\tau} - R_{\mu\nu} R^{\mu\nu} + \Box R \Big) \hat{1} + \frac{1}{12} \hat{\mathscr{R}}_{\mu\nu} \hat{\mathscr{R}}^{\mu\nu} + \frac{1}{2} \hat{P}^2 + \frac{1}{6} \Box \hat{P} \,.$$

Renormalized constants

$$S_{ren} = \int d^4x \sqrt{-g} \left(\alpha_R R^2 + \beta_R R_{\mu\nu} R^{\mu\nu} - \frac{1}{4e_R^2} F^2 + (D\phi)^2 + \frac{1}{6} R \phi^2 - \lambda_R^2 \phi^4 \right)$$

running coupling constants governed by an RG equation -> length scale introduced

Trace anomaly involves composite operators

The SO(2,3) symmetry of AdS background yields

$$\langle T_{\mu\nu} \rangle \equiv \frac{2}{\sqrt{-g}} \frac{\delta W_{ren}}{\delta g^{\mu\nu}} = \frac{1}{4} g_{\mu\nu} \langle T^{\mu}_{\ \mu} \rangle$$

$$< T^{\mu}_{\mu} > = \frac{3\lambda^2}{16\,\pi^2} [\phi^4] - [E] + \frac{1}{16\pi^2} \Big[\frac{1}{60} \Big(R_{\mu\nu\sigma\tau} R^{\mu\nu\sigma\tau} - R_{\mu\nu} R^{\mu\nu} + \Box R \Big) - \frac{1}{6} F^2 - \frac{10}{3} \,\lambda^2 \Box \left[\phi^2 \right] \Big]$$

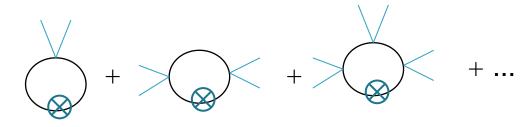
$$[E] \equiv \frac{\phi^a}{\sqrt{-g}} \frac{\delta W_{ren}}{\delta \phi^a} \qquad [] = \text{composite operators}$$

need to calculate value of composite operators in vacuum with spontaneous symmetry breaking (non-zero VEV Φ_0)

use the effective potential formalism

One loop effective potential U with composite operator insertion: $[\Phi^2]$ example

 $[\Phi^2]$: insert an extra vertex \bigotimes in one loop Feynman diagrams with zero external momenta.



$$U(\phi_0) = \sum_{n=1}^{\infty} \frac{1}{n!} \Gamma^n(0; 0, 0, 0, ...0) \phi_o(x)^n$$

Tree level (zero loop): $U_0 = \phi_0^2$

one loop and renormalization

In AdS, R=constant=12k. Define $\mu^2 = R/3 = 4k$.

$$\Gamma^{2n}(0;0,..0) = \frac{(2n)!}{2 \, 2^n} \int \frac{d^4k}{(2\pi)^4} \Big((-i\lambda) \frac{i}{k^2 - \mu^2 + i\epsilon} \Big)^n \frac{i}{k^2 - \mu^2 + i\epsilon}$$

$$\begin{split} U_1 &= \frac{-1}{2} \int \frac{d^4 k_E}{(2\pi)^4} \frac{1}{k_E^2 + \mu^2 - i\epsilon} \frac{\lambda \phi_0^2}{2(k_E^2 + \mu^2 + \lambda \phi_c^2/2 - i\epsilon)} \\ &= \frac{-\lambda \phi_o^2}{16\pi^2} \int_0^{\Lambda} \frac{k_E^3 dk}{(k_E^2 + \mu^2 + \lambda \phi_0^2/2) (k_E^2 + \mu^2)} \\ &= \frac{-1}{32\pi^2} \Big((2\mu^2 + \lambda \phi^2) \ln \left(\frac{2\Lambda^2 + 2\mu^2 + \lambda \phi_o^2}{2\mu^2 + \lambda \phi_0^2} \right) - 2\mu^2 \ln(\Lambda^2 + \mu^2) + 2\mu^2 \ln(\mu^2) \Big) \Big) \end{split}$$

Add counterterm $U_{ct} = A\phi_0^2$. The constant A is determined by the renormalization condition $\Gamma^2(0;0,0) = 2$ which implies $\frac{d^2U}{d\phi_0^2}|_{\phi_0=0} = 2$

$$U(\phi_0) = \phi_0^2 + \frac{\mu^2}{16\pi^2} \ln(\frac{\mu^2 + \lambda\phi_0^2}{\mu^2}) - \frac{1}{32\pi^2} \frac{2\lambda\mu^2\phi_0^2 + 3\lambda^2\phi_0^4}{2\mu^2 + \lambda\phi_0^2}$$

Commutator Curvature

$$[D_{\mu}, D_{\nu}] \phi^{a} = \mathscr{R}^{a}{}_{b \mu \nu} \phi^{b} \text{ with } \hat{\mathscr{R}}_{\mu \nu} \equiv \mathscr{R}^{a}{}_{b \mu \nu}$$

$$\begin{aligned} D_{\mu}D_{\nu}\phi^{a} &= \nabla_{\mu}(D_{\nu}\phi^{a}) + \varepsilon^{a}{}_{bc}A^{b}_{\mu}D_{\nu}\phi^{c} \\ &= \nabla_{\mu}(\nabla_{\nu}\phi^{a} + \varepsilon^{a}{}_{de}A^{d}_{\nu}\phi^{e}) + \varepsilon^{a}{}_{bc}A^{b}_{\mu}(\nabla_{\nu}\phi^{c} + \varepsilon^{c}{}_{fg}A^{f}_{\nu}\phi^{g}) \\ &= \nabla_{\mu}\nabla_{\nu}\phi^{a} + \varepsilon^{a}{}_{de}\nabla_{\mu}A^{d}_{\nu}\phi^{e} + \varepsilon^{a}{}_{de}A^{d}_{\nu}\nabla_{\mu}\phi^{e} + \varepsilon^{a}{}_{bc}A^{b}_{\mu}\nabla_{\nu}\phi^{c} + \varepsilon^{a}{}_{bc}\varepsilon^{c}{}_{fg}A^{b}_{\mu}A^{f}_{\nu}\phi^{g} \,.\end{aligned}$$

The commutator is then given by

$$[D_{\mu}, D_{\nu}]\phi^{a} = \varepsilon^{a}{}_{de} \left(\nabla_{\mu}A^{d}_{\nu} - \nabla_{\nu}A^{d}_{\mu} \right) \phi^{e} + \varepsilon^{a}{}_{bc} \varepsilon^{c}{}_{fg} \left(A^{b}_{\mu}A^{f}_{\nu} - A^{b}_{\nu}A^{f}_{\mu} \right) \phi^{g}$$
$$= \varepsilon^{a}{}_{de} \left(\nabla_{\mu}A^{d}_{\nu} - \nabla_{\nu}A^{d}_{\mu} + \varepsilon^{d}{}_{fg}A^{f}_{\mu}A^{g}_{\nu} \right) \phi^{e}$$
$$= \varepsilon^{a}{}_{de} F^{d}_{\mu\nu} \phi^{e}$$

$$\hat{\mathscr{R}}_{\mu\nu} \equiv \mathscr{R}^{a}{}_{e\,\mu\,\nu} \!=\! \varepsilon^{a}{}_{de} F^{d}_{\mu\nu}$$

$$P_{ij} = -\frac{\partial}{\partial\phi_i} \frac{\partial}{\partial\phi_j} \lambda^2 (\phi_a \phi^a)^2 = -4 \lambda^2 (\delta_{ij} \phi_a \phi^a + 2 \phi_i \phi_j)$$

Notation

We use the notation of Mukhanov & Winitzki, *Introduction to Quantum Effects in Gravity* (2007).

Metric signature is (+,-,-,-),

$$R^{\rho}_{\sigma\mu\nu} \equiv \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \dots$$
 and $R_{\mu\nu} \equiv R^{\lambda}_{\ \mu\lambda\nu}$