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The Higuchi bound is a condition that stems from requiring stability 
from the classical theory of linear Massive Gravity 

L = LEH + Lm =
X

pT q̇ �
h1
2
pT · P · p+ 1

2
qT ·Q · q + pT · P̄Q · q

i

Roughly speaking:  stability <==> Q , P positive definite       (Higuchi + gradient instability)

(1)

(2)

Essential literature: A. Higuchi
Nucl.Phys. B282 (1987) 397

S. Deser, A. Waldron
Phys.Lett. B508 (2001) 347-353
hep-th/0103255

L.Grisa, L.Sorbo
Phys.Lett. B686 (2010) 273-278 
arXiv:0905.3391
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Let’s take a look     

S = SEH � m

2

4

Z
d

4
x

p
�ḡ
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where:
fµ⌫ = ḡµ⌫EH

use ADM formalism

solve constraint equations, solve for

usual tensor decomposition Tij = TTt
ij + 2@(iT

t
j) +

1

2

⇣
�ij � @̂ij

⌘
T t + @̂ijT

l

canonical transformation: pl ! p0 + ht
�
m2 � 2H2

�
/4H ; hl ! q0 + ht/2

pt, ht

We are looking at the scalar here, the helicity 0 mode

example:  Fierz-Pauli
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in this setup, the Higuchi bound reads:

m2 > 2H2

⌫2 > 0

Immediately then, stability dictates:

⌫2 = m2 � 2H2

I0 = p0q̇0 �
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2

h3⌫2m2
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Rµ⌫ +m2hµ⌫ ⇠ Tµ⌫

hµ⌫ ⇠ 1 R ⇠ m2

C. Deffayet, G. Dvali, G. Gabadadze, A. 
Vainshtein   hep-th/0106001 
Phys.Rev. D65 (2002) 044026 

G. Chkareuli, D. Pirtskhalava
airXiv 11.05.1783

therefore

R ⇠ r2� ; � ⇠ GM

r
) R ⇠ GM

r3
⇠ m2

rV =

✓
M

M2
Pm

2

◆1/3

r < rV r > rV

 Vainshtein radius
a quick, heuristic 

derivation:

fµ⌫ 6= ḡµ⌫

* underlying assumption:
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one must require

3H2 = ⇤+ 3m2 ⇥⇥(1)

m2 < H2

Inside the Vainshtein radius lies the region where one recovers GR 

schematically:

m2 < H2

GR works all around us want our theory to be stable

m2 > 2H2

Combining Higuchi and Vainshtein then:
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  Shall we add matter content? Of course:

Plan: Study a ghost-free theory of 
massive gravity with matter content

Shall we use a different reference metric “f ”?  Yes, no reason not to.

Clearly, there’s a problem...
In deriving the Higuchi bound, a number of assumptions were made:

[Grisa and Sorbo, 2010] m2 > 2(H2 + Ḣ)

but FP gravity, i.
e. ghosts!

fµ⌫ 6= ḡµ⌫
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dRGT:  Ghost-free m.g. theory at fully non-linear level
De Rham, Gabadadze, Tolley

Hassan, Rosen* No Boulware-Deser Ghost, at all orders

* Screening mechanism in the non linear regime that 
restores continuity with G.R.  as m approaches 0

* High enough cutoff so that the theory different regimes can be described

S = SEH+2m2
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Our set up

* dRGT theory of massive gravity

** The reference metric “f ” and “g0” need not be the same,
parametrize this as: 

with

Sm2 = 2m2
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"2(X) =
1

2

�
Tr2[X]� Tr[X2]

�
;

"3(X) =
1

6

�
Tr3[X]� 3Tr[X2]Tr[X] + 2Tr[X3]

�

"4(X) =
1

24

�
Tr4[X]� 6Tr[X2]Tr2[X] + 3Tr2[X2] + 8Tr[X3]Tr[X]� 6Tr[X4]

�

fµ⌫ = (1 + z)ḡµ⌫
*

* in dS
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in other words, the Higuchi bound has the generic form

Higuchi bound:

m2(1� z � 2z2)(m2(1� z � 2z2)� 2H2) > 0

m̃2(m̃2 � 2H2) > 0

m̃ is the dressed mass, we ask m̃2 > 0 to avoid instabilities in the vector sector.  

Two branches of solutions:

0 < H <
3

2
H0 ;

m2 >
2HH2

0

3H0 � 2H
.

H >
3

2
H0 ;

m2 < � 2HH2
0

2H � 3H0
.

1 + z = H/H0
*

includes the H0 =H branch new branch 

apparently, for H>>H0, |m2|/H2
0 > 1

this is a much weaker Higuchi bound, but Vainshtein 
will require the opposite inequality to hold, a.k.a. : 

back to square 1. 
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Add matter:

Background:

L = LEH + LdRGT +
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Ḣ drops out of the Higuchi inequality ! The bound is independent from the 
equation of state for matter:

m̃2(H) = m2 H

H0

✓
(3 + 3↵3 + ↵4)� 2(1 + 2↵3 + ↵4)

H

H0
+ (↵3 + ↵4)

H2

H2
0

◆
� 2H2.

interesting feature, but the problem remains.

Could the freedom on the alpha’s pay off?

It doesn’t . Time evolution does not help either.

↵3 = �1 = �↵4

structure also makes it hard.
poly

(k)
1 (z)

poly

(k)
2 (z)

� 1

In this setup there is no regime which is simultaneously 
observationally acceptable and ghost-free.
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A quicker method and a resolution of the H-V tension

Use the properties of the mini superspace action:

ds

2 = ��̇

2
dt

2 + b(�2)d~x2

S =

Z
dtNa3
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field  redefinition: 
� = 1/H0 ln(a) + �/H0; M = Na3;  = a3/3

An(3� n) = Bn+1(n+ 1)

Bn ⇠ m2M2
Pl ⇥ (1,↵3,↵4)
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fluctuations + diagonalize 

S(2) =

Z
dt
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!

gravity sector has decoupled from helicity zero mode 

we read off the Higuchi bound

Proceeding analogously for bigravity, when f  too is dynamical: 
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m2
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H2 +

H2
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2
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f

!
� 2H4

new
 !
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Fully bi-metric theories 

What to do now?

 Inhomogeneities in the  �’s ?

work in progress...
Reasons to be hopeful:  see

 Gabadadze et al. , “massive cosmologies” .
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