Averaged null energy condition in curved space

Eleni-Alexandra Kontou and Ken D. Olum

Institute of Cosmology, Department of Physics and Astronomy
Tufts University

Midwest Relativity Meeting, University of Chicago, 2012
To have a spacetime with exotic features an appropriate stress-energy tensor is required.
To have a spacetime with exotic features an appropriate stress-energy tensor is required.

To rule them out we need to prove energy conditions that restrict T_{ab}.
To have a spacetime with exotic features an appropriate stress-energy tensor is required.

To rule them out we need to prove energy conditions that restrict T_{ab}.
The best possibility to do that is the achronal Averaged Null Energy Condition (ANEC):
The best possibility to do that is the achronal Averaged Null Energy Condition (ANEC):

Achronal ANEC

Let M a manifold, g its lorentzian metric. Also let γ an achronal null geodesic and l^a its tangent vector. Then

$$\int_{\gamma} T_{ab} l^a l^b \geq 0$$
⇒ The best possibility to do that is the achronal Averaged Null Energy Condition (ANEC):

Achronal ANEC

Let M a manifold, g its lorentzian metric. Also let γ an achronal null geodesic and l^a its tangent vector. Then

$$\int_{\gamma} T_{ab} l^a l^b \geq 0$$

⇒ Achronal ANEC was proved (Fewster, Olum, Pfenning. 2007) to hold for geodesics in curved space, providing that any curvature stays some minimum distance from the geodesic, which then are travelling in flat space. Here we will try to prove it for geodesics travelling in curved space.
Assumptions

1 **Congruence of geodesics**: We need ANEC violation along a finite congruence of geodesics so we define a "tubular" neighborhood M' of null geodesic γ composed of a congruence of null geodesics.
Assumptions

1. **Congruence of geodesics**: We need ANEC violation along a finite congruence of geodesics so we define a ”tubular” neighborhood M' of null geodesic γ composed of a congruence of null geodesics.

2. **Coordinate system**: Fermi-like coordinates.
Assumptions

1 **Congruence of geodesics:** We need ANEC violation along a finite congruence of geodesics so we define a "tubular" neighborhood M' of null geodesic γ composed of a congruence of null geodesics.

2 **Coordinate system:** Fermi-like coordinates.

3 **Curvature:** We require that $|R_{\mu\nu\rho\sigma}| < R_{\text{max}}$ everywhere in M'. We also require the null convergence condition $R_{ab}l^a l^b \geq 0$ for any null vector l which holds whenever the curvature is generated by a classical background whose stress tensor obeys the Null Energy Condition (NEC).
Assumptions

1 **Congruence of geodesics**: We need ANEC violation along a finite congruence of geodesics so we define a "tubular" neighborhood M' of null geodesic γ composed of a congruence of null geodesics.

2 **Coordinate system**: Fermi-like coordinates.

3 **Curvature**: We require that $|R_{\mu\nu\rho\sigma}| < R_{\text{max}}$ everywhere in M'. We also require the null convergence condition $R_{ab} l^a l^b \geq 0$ for any null vector l which holds whenever the curvature is generated by a classical background whose stress tensor obeys the Null Energy Condition (NEC).

4 **Causal structure**: Conditions outside M' do not affect the causal structure of M'

\[J^+(p, M) \cap M' = J^+(p, M') \]
Assumptions

1 **Congruence of geodesics**: We need ANEC violation along a finite congruence of geodesics so we define a ”tubular” neighborhood M' of null geodesic γ composed of a congruence of null geodesics.

2 **Coordinate system**: Fermi-like coordinates.

3 **Curvature**: We require that $|R_{\mu\nu\rho\sigma}| < R_{\text{max}}$ everywhere in M'. We also require the null convergence condition $R_{ab}l^a l^b \geq 0$ for any null vector l which holds whenever the curvature is generated by a classical background whose stress tensor obeys the Null Energy Condition (NEC).

4 **Causal structure**: Conditions outside M' do not affect the causal structure of M'

$$J^+(p, M) \cap M' = J^+(p, M')$$

5 **Quantum field theory**: We consider a quantum scalar field in M, which inside M' is free and minimally coupled.
Quantum inequality

In flat spacetime it was proved (Fewster, Roman 2002) that

\[
\int_{-\tau_0}^{\tau_0} d\tau \ T_{ab}(w(\tau)) l^a l^b f(\tau/\tau_0)^2 \geq - \frac{(k_a l^a)^2}{12\pi^2 \tau_0^4} \int_{-\tau_0}^{\tau_0} d\tau f''(\tau/\tau_0)^2
\]

where \(f \) is compact function with \(\int_{-1}^{1} dx f(x)^2 = 1 \).
In flat spacetime it was proved (Fewster, Roman 2002) that

\[\int_{-\tau_0}^{\tau_0} d\tau T_{ab}(w(\tau))l^a l^b f(\tau/\tau_0)^2 \geq -\frac{(k_0 l^a)^2}{12\pi^2 \tau_0^4} \int_{-\tau_0}^{\tau_0} d\tau f''(\tau/\tau_0)^2 \]

where \(f \) is compact function with \(\int_{-1}^{1} dx f(x)^2 = 1 \). Suppose we want to test quantum inequality in a laboratory on the surface of the earth... This is not flat space but it has curvature of order \(GM_0 / R_0^3 \).

⇒ We expect QI to hold with a small correction in globally hyperbolic spacetimes with small curvature: \(|R_{abcd}|\tau_0^2 < \epsilon \), where \(\epsilon \ll 1 \) and small proper acceleration of the timelike paths.
Quantum inequality

In flat spacetime it was proved (Fewster, Roman 2002) that

$$\int_{-\tau_0}^{\tau_0} d\tau \, T_{ab}(w(\tau)) l^a l^b f(\tau/\tau_0)^2 \geq -\left(\frac{k_a l^a}{12\pi^2 \tau_0^4}\right) \int_{-\tau_0}^{\tau_0} d\tau f''(\tau/\tau_0)^2$$

where f is compact function with $\int_{-1}^{1} dx f(x)^2 = 1$. Suppose we want to test quantum inequality in a laboratory on the surface of the earth... This is not flat space but it has curvature of order GM_\oplus/R_\oplus.

\Rightarrow We expect QI to hold with a small correction in globally hyperbolic spacetimes with small curvature: $|R_{abcd}| \tau_0^2 < \epsilon$, where $\epsilon \ll 1$ and small proper acceleration of the timelike paths

Conjecture

$$\int_{-\tau_0}^{\tau_0} d\tau \, T_{ab}(w(\tau)) l^a l^b f(\tau/\tau_0)^2 \geq -\left(\frac{k_a l^a}{12\pi^2 \tau_0^4}\right) \int_{-\tau_0}^{\tau_0} d\tau f''(\tau/\tau_0)^2 [1 + c\epsilon]$$
Proof of achronal ANEC

1 The parallelogram

Consider the points \(\Phi(u, v) = (u, v, 0, 0) \), null geodesics in \(M' \). The ANEC integral can be written as

\[
A(v) = \int_{-\infty}^{\infty} du T_{uu}(\Phi(u, v))
\]
Proof of achronal ANEC

1 The parallelogram

Consider the points
\(\Phi(u, v) = (u, v, 0, 0) \), null geodesics in \(M' \). The ANEC integral can be written as

\[
A(v) = \int_{-\infty}^{\infty} du T_{uu}(\Phi(u, v))
\]

Define \(\tau_0 = \gamma^{-\alpha} r \) where \(0 < \alpha < 1/3 \) and \(r \) a positive number with dimensions of length. As \(V \to 1, \gamma \to \infty \) and \(\tau_0 \to 0 \). Now consider the points \(\Phi_V(\eta, \tau) = \Phi(u, v) \) we can write the ANEC integral as
Proof of achronal ANEC

1 The parallelogram

Consider the points $\Phi(u, v) = (u, v, 0, 0)$, null geodesics in M'. The ANEC integral can be written as

$$A(v) = \int_{-\infty}^{\infty} du T_{uu}(\Phi(u, v))$$

Define $\tau_0 = \gamma^{-\alpha} r$ where $0 < \alpha < 1/3$ and r a positive number with dimensions of length. As $V \to 1$, $\gamma \to \infty$ and $\tau_0 \to 0$. Now consider the points $\Phi_V(\eta, \tau) = \Phi(u, v)$ we can write the ANEC integral as

$$\int_{-\eta_0}^{\eta_0} d\eta \int_{-\tau_0}^{\tau_0} d\tau T_{uu}(\Phi_V(\eta, \tau)) f(\tau/\tau_0)^2 < -A\tau_0$$
Proof of achronal ANEC

Timelike paths

\[-\tau_0 < \tau < \tau_0 \]

\[-\eta_0 < \eta < \eta_0 \]

\[\eta_0 \sim \gamma \tau_0 \]

Null paths

\[-\tau < \tau < \tau_0 \]
1 Transformation of the Riemann tensor

- We want to show that after the Lorentz transformation all components of the Riemann tensor remain bounded.
1 Transformation of the Riemann tensor

- We want to show that after the Lorentz transformation all components of the Riemann tensor remain bounded.
- We are interested for the components with more u's than ν's because they increase after the boost.
1 Transformation of the Riemann tensor

- We want to show that after the Lorentz transformation all components of the Riemann tensor remain bounded.
- We are interested for the components with more u’s than v’s because they increase after the boost.
- Using the fact that NEC holds for the classical background we find that these components vanish.
1 Transformation of the Riemann tensor

- We want to show that after the Lorentz transformation all components of the Riemann tensor remain bounded.
- We are interested for the components with more u's than ν's because they increase after the boost.
- Using the fact that NEC holds for the classical background we find that these components vanish.

\[|R_{a'b'c'd'}| < R_{\text{max}} \]
2 Timelike paths

We want to prove that $\Phi_V(\eta, \tau)$ are approximately timelike paths.
2 Timelike paths

- We want to prove that $\Phi_V(\eta, \tau)$ are approximately timelike paths.
- It was proved (Kontou, Olum 2012) that

 $g_{\alpha'\beta'} = \eta_{\alpha'\beta'} + h_{\alpha'\beta'} = \eta_{\alpha'\beta'} + O(RX^2)$ where X denotes coordinate values.

We apply the QNEI in the globally hyperbolic causal diamond $N = J^+(p) \cap J^-(q)$ which we proved that is inside the tube after the boost.
2 Timelike paths

- We want to prove that $\Phi_V(\eta, \tau)$ are approximately timelike paths.
- It was proved (Kontou, Olum 2012) that

 \[g_{\alpha'\beta'} = \eta_{\alpha'\beta'} + h_{\alpha'\beta'} = \eta_{\alpha'\beta'} + O(RX^2) \]

 where X denotes coordinate values.
- In our case we can easily prove that $h_{\alpha'\beta'} = O(R_{\max}\tau_0^2)$ so

 \[g_{\alpha'\beta'} k^{\alpha'} k^{\beta'} = -1 + O(R_{\max}\tau_0^2) \]

 so timelike for sufficiently large γ.

2 Timelike paths

- We want to prove that $\Phi_V(\eta, \tau)$ are approximately timelike paths.
- It was proved (Kontou, Olum 2012) that
 \[g_{\alpha'\beta'} = \eta_{\alpha'\beta'} + h_{\alpha'\beta'} = \eta_{\alpha'\beta'} + O(RX^2) \]
 where X denotes coordinate values.
- In our case we can easily prove that $h_{\alpha'\beta'} = O(R_{\max} \tau_0^2)$ so
 \[g_{\alpha'\beta'} k^{\alpha'} k^{\beta'} = -1 + O(R_{\max} \tau_0^2) \] so timelike for sufficiently large γ.
- Using the same arguments we can prove that the acceleration is
 \[|\alpha^{\beta'}| \tau_0 = O(R_{\max} \tau_0^2) \]
2 Timelike paths

- We want to prove that $\Phi_V(\eta, \tau)$ are approximately timelike paths
- It was proved (Kontou, Olum 2012) that
 \[g_{a'b'} = \eta_{a'b'} + h_{a'b'} = \eta_{a'b'} + O(RX^2) \] where X denotes coordinate values.
- In our case we can easily prove that $h_{a'b'} = O(R_{\text{max}}\tau_0^2)$ so
 \[g_{a'b'} k_{a'} k_{b'} = -1 + O(R_{\text{max}}\tau_0^2) \] so timelike for sufficiently large γ
- Using the same arguments we can prove that the acceleration is
 \[|a'b'| \tau_0 = O(R_{\text{max}}\tau_0^2) \]
- We apply the QNEI in the globally hyperbolic causal diamond
 \[N = \mathcal{J}^+(p) \cap \mathcal{J}^-(q) \] which we proved that is inside the tube after the boost
3 Quantum Inequality

We showed that the curvature is bounded, paths Φ_V are timelike and proper acceleration is small. So now we can apply the quantum inequality for small curvature:

$$\int_{-\eta_0}^{\eta_0} d\eta \int_{-\tau_0}^{\tau_0} d\tau T_{uu}(\Phi_V(\eta, \tau)) f(\tau/\tau_0)^2 \geq -\frac{F\eta_0}{12\pi^2\gamma^2\tau_0^3} \left[1 + O(R_{max}\tau_0^2)\right]$$

Where we used $(l_\alpha k^\alpha)^2 \sim 1/\gamma^2$ and $F = \tau_0^{-1} \int d\tau f''(\tau/\tau_0)^2$.
3 Quantum Inequality

We showed that the curvature is bounded, paths Φ_V are timelike and proper acceleration is small. So now we can apply the quantum inequality for small curvature:

$$\int_{-\eta_0}^{\eta_0} d\eta \int_{-\tau_0}^{\tau_0} d\tau \ T_{uu}(\Phi_V(\eta, \tau)) f(\tau/\tau_0)^2 \geq -\frac{F\eta_0}{12\pi^2\gamma^2\tau_0^3}[1 + O(R_{\text{max}}\tau_0^2)]$$

Where we used $(l_\alpha k^\alpha)^2 \sim 1/\gamma^2$ and $F = \tau_0^{-1} \int d\tau f''(\tau/\tau_0)^2$. The right hand of this equation goes like $\frac{\eta_0}{\gamma^2\tau_0^3} \sim \gamma^{2\alpha-1}$ while in the ANEC inequality

$$\int_{-\eta_0}^{\eta_0} d\eta \int_{-\tau_0}^{\tau_0} d\tau \ T_{uu}(\Phi_V(\eta, \tau)) f(\tau/\tau_0)^2 < -A\tau_0$$

the right hand side goes like $\tau_0 \sim \gamma^\alpha$
3 Quantum Inequality

We showed that the curvature is bounded, paths Φ_V are timelike and proper acceleration is small. So now we can apply the quantum inequality for small curvature:

$$\int_{-\eta_0}^{\eta_0} d\eta \int_{-\tau_0}^{\tau_0} d\tau T_{uu}(\Phi_V(\eta, \tau)) f(\tau/\tau_0)^2 \geq -\frac{F\eta_0}{12\pi^2\gamma^2\tau_0^3}[1 + O(R_{\text{max}}\tau_0^2)]$$

Where we used $(l_\alpha k^\alpha)^2 \sim 1/\gamma^2$ and $F = \tau_0^{-1} \int d\tau f''(\tau/\tau_0)^2$. The right hand of this equation goes like $\frac{\eta_0}{\gamma^2\tau_0^3} \sim \gamma^{2\alpha-1}$ while in the ANEC inequality

$$\int_{-\eta_0}^{\eta_0} d\eta \int_{-\tau_0}^{\tau_0} d\tau T_{uu}(\Phi_V(\eta, \tau)) f(\tau/\tau_0)^2 < -A\tau_0$$

the right hand side goes like $\tau_0 \sim \gamma^\alpha$

\Rightarrow Since $\alpha < 1/3$ the lower bound in the first equation goes to zero faster than the upper bound in the second equation. This contradiction proves the theorem.
Conclusions

Did we rule out time machines, wormholes and superluminal travel?

- We proved that ANEC holds in curved spacetimes with classical background and minimally coupled free quantum fields \(\Rightarrow \) No exotic features in that kind of spacetimes
Conclusions

Did we rule out time machines, wormholes and superluminal travel?

- We proved that ANEC holds in curved spacetimes with classical background and minimally coupled free quantum fields \Rightarrow No exotic features in that kind of spacetimes
- In future work we need to prove Quantum Inequality for curved spacetime
Conclusions

Did we rule out time machines, wormholes and superluminal travel?

- We proved that ANEC holds in curved spacetimes with classical background and minimally coupled free quantum fields\(\Rightarrow\) No exotic features in that kind of spacetimes
- In future work we need to prove Quantum Inequality for curved spacetime
- Also we should rule out the probability that a field generated by another field which violates NEC but obeys ANEC, can violate ANEC
Conclusions

Did we rule out time machines, wormholes and superluminal travel?

- We proved that ANEC holds in curved spacetimes with classical background and minimally coupled free quantum fields \Rightarrow No exotic features in that kind of spacetimes
- In future work we need to prove Quantum Inequality for curved spacetime
- Also we should rule out the probability that a field generated by another field which violates NEC but obeys ANEC, can violate ANEC