Importance of cooling in triggering the collapse of hypermassive neutron stars

Vasileios Paschalidis
Department of Physics, UIUC

Collaborators
Zachariah B. Etienne
Stuart L. Shapiro

PRD 86, 064032 (2012)

22nd Midwest Relativity Meeting
University of Chicago, September 28-29, 2012
Motivation

- HMNSs arise following the merger of binary neutron stars when the total mass $< 1.3-1.35 \, M_{\text{TOV,limit}}$ (Shibata, Taniguchi, PRD 73, 064027)

- HMNSs are born hot and rapidly differentially rotating
Motivation

- HMNSs arise following the merger of binary neutron stars when the total mass $< 1.3 - 1.35 \, \text{M}_{\text{TOV,limit}}$ (Shibata, Taniguchi, PRD 73, 064027)

- HMNSs are born hot and rapidly differentially rotating

- HMNSs are transient objects: they undergo delayed collapse to a BH on a secular timescale (cooling, viscosity, magnetic braking, GWs)
Motivation

- HMNSs arise following the merger of binary neutron stars when the total mass < 1.3-1.35 $M_{\text{TOV,limit}}$ (Shibata, Taniguchi, PRD 73, 064027)

- HMNSs are born **hot** and **rapidly differentially rotating**

- HMNSs are transient objects: they undergo delayed collapse to a BH on a **secular** timescale (cooling, viscosity, magnetic braking, GWs)

<table>
<thead>
<tr>
<th>Source of support</th>
<th>Collapse Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal</td>
<td>Viscosity</td>
</tr>
<tr>
<td></td>
<td>GWs</td>
</tr>
<tr>
<td></td>
<td>Magnetic breaking</td>
</tr>
</tbody>
</table>
Motivation

- HMNSs arise following the merger of binary neutron stars when the total mass $< 1.3-1.35 \, M_{\text{TOV, limit}}$ (Shibata, Taniguchi, PRD 73, 064027)
- HMNSs are born hot and rapidly differentially rotating
- HMNSs are transient objects: they undergo delayed collapse to a BH on a secular timescale (cooling, viscosity, magnetic braking, GWs)

<table>
<thead>
<tr>
<th>Source of support</th>
<th>Collapse Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal</td>
<td>Viscosity</td>
</tr>
<tr>
<td></td>
<td>GWs</td>
</tr>
<tr>
<td></td>
<td>Magnetic breaking</td>
</tr>
<tr>
<td>Shock-Induced Thermal</td>
<td>Cooling (neutrinos)</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
</tbody>
</table>
Motivation

- HMNSs arise following the merger of binary neutron stars when the total mass $< 1.3-1.35 \, M_{\text{TOV,limit}}$ (Shibata, Taniguchi, PRD 73, 064027)
- HMNSs are born **hot** and **rapidly differentially rotating**
- HMNSs are transient objects: they undergo delayed collapse to a BH on a **secular** timescale (cooling, viscosity, magnetic braking, GWs)

<table>
<thead>
<tr>
<th>Source of support</th>
<th>Collapse Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal</td>
<td>Viscosity</td>
</tr>
<tr>
<td></td>
<td>GWs</td>
</tr>
<tr>
<td></td>
<td>Magnetic breaking</td>
</tr>
<tr>
<td>Shock-Induced Thermal Pressure</td>
<td>Cooling (neutrinos)</td>
</tr>
</tbody>
</table>
Motivation

- The mechanism responsible for supporting the HMNS against collapse determines the lifetime of the HMNS.
Motivation

- The mechanism responsible for supporting the HMNS against collapse determines the lifetime of the HMNS.
- Lifetime: measurable via GWs

Sekiguchi et al, PRL 107:051102,(2011)
Motivation

- The mechanism responsible for supporting the HMNS against collapse determines the lifetime of the HMNS.

- Lifetime: measurable via GWs

GW observations: can constrain B-field strength, bar modes, cooling mechanisms, temperatures, etc.

Sekiguchi et al, PRL 107:051102,(2011)
Recent works seem to be pointing in different directions.

Baiotti et al. (2008): equal-mass (n=1) polytropic NSNSs
- GW J-loss alone drives collapse → Centrifugal support most important.
Recent works seem to be pointing in different directions.

Baiotti et al. (2008): equal-mass (n=1) polytropic NSNSs

- GW J-loss **alone** drives collapse → **Centrifugal support most important**.

Sekiguchi et al. (2011): equal-mass (realistic EOS) NSNSs

- GW J-loss does **not** drive collapse → **Thermal support most important**

Background: Thermal or Centrifugal support?
Recent works seem to be pointing in different directions.

Baiotti et al. (2008): equal-mass (n=1) polytropic NSNSs
 - GW J-loss alone drives collapse → Centrifugal support most important.

Sekiguchi et al. (2011): equal-mass (realistic EOS) NSNSs
 - GW J-loss does not drive collapse → Thermal support most important

Question: Is thermal support important or not?
HMNS Relevant Timescales

- GW timescale

\[t_{GW} \equiv \frac{J}{dJ/dt} \approx \frac{1}{MR^2\Omega^4 e^2} = \frac{R^4}{\epsilon^4 e^2 M^3} \]

\[\epsilon = \frac{\Omega}{\Omega_{\text{breakup}}} \]
HMNS Relevant Timescales

- GW timescale

\[t_{GW} \approx 200 \left(\frac{\epsilon}{0.5} \right)^{-4} \left(\frac{e}{0.75} \right)^{-2} \left(\frac{R}{20\text{km}} \right)^4 \left(\frac{M}{2.8M_\odot} \right)^{-3} \text{ ms} \]
HMNS Relevant Timescales

• GW timescale

\[t_{GW} \approx 200 \left(\frac{\epsilon}{0.5} \right)^{-4} \left(\frac{e}{0.75} \right)^{-2} \left(\frac{R}{20\text{km}} \right)^{4} \left(\frac{M}{2.8M_\odot} \right)^{-3} \text{ ms} \]

• Alfven (magnetic braking) timescale

\[t_A \approx \frac{R}{v_A} \approx \frac{R\sqrt{4\pi\rho}}{B} \]
HMNS Relevant Timescales

- GW timescale

\[t_{GW} \approx 200 \left(\frac{\epsilon}{0.5} \right)^{-4} \left(\frac{e}{0.75} \right)^{-2} \left(\frac{R}{20\text{km}} \right)^4 \left(\frac{M}{2.8M_\odot} \right)^{-3} \text{ms} \]

- Alfven (magnetic braking) timescale

\[t_A \approx 100 \left(\frac{R}{20\text{km}} \right)^{-1/2} \left(\frac{M}{2.8M_\odot} \right)^{1/2} \left(\frac{B}{10^{15}\text{G}} \right)^{-1} \text{ms} \]
HMNS Relevant Timescales

- **GW timescale**
 \[t_{GW} \approx 200 \left(\frac{\varepsilon}{0.5} \right)^{-4} \left(\frac{e}{0.75} \right)^{-2} \left(\frac{R}{20\text{km}} \right)^4 \left(\frac{M}{2.8M_\odot} \right)^{-3} \text{ ms} \]

- **Alfven (magnetic braking) timescale**
 \[t_A \approx 100 \left(\frac{R}{20\text{km}} \right)^{-1/2} \left(\frac{M}{2.8M_\odot} \right)^{1/2} \left(\frac{B}{10^{15}\text{G}} \right)^{-1} \text{ ms} \]

- **Neutrino cooling timescale**
 \[t_{cool} \approx 3 \frac{R^2}{\lambda_n c} \]

\[\lambda_n^{-1} = n\sigma_n \]

\[\sigma_{\text{scat}} \approx \frac{1}{4} \sigma_0 \left(\frac{E_\nu}{m_e c^2} \right)^2 , \]

\[\sigma_{\text{abs}} \approx 1.42\sigma_0 \left(\frac{E_\nu}{m_e c^2} \right)^2 \]
HMNS Relevant Timescales

- GW timescale

\[t_{GW} \approx 200 \left(\frac{\epsilon}{0.5} \right)^{-4} \left(\frac{e}{0.75} \right)^{-2} \left(\frac{R}{20\text{km}} \right)^4 \left(\frac{M}{2.8M_{\odot}} \right)^{-3} \text{ms} \]

- Alfven (magnetic braking) timescale

\[t_A \approx 100 \left(\frac{R}{20\text{km}} \right)^{-1/2} \left(\frac{M}{2.8M_{\odot}} \right)^{1/2} \left(\frac{B}{10^{15}\text{G}} \right)^{-1} \text{ms} \]

- Neutrino cooling timescale

\[t_{cool} \approx 400 \left(\frac{M}{2.8M_{\odot}} \right) \left(\frac{R}{20\text{km}} \right)^{-1} \left(\frac{E_\nu}{10\text{MeV}} \right)^2 \text{ms} \]

Cooling timescale comparable to other timescales
Fully GRHD simulations accounting for HMNS cooling with an effective emissivity

- **Goal**: Assess the importance of shock-induced thermal pressure support in an HMNS formed following the merger of a NSNS

- **Binary NS initial data** (LORENE generated and publicly available):
 a) equal-mass, $n=1$ polytropic
 b) circular orbit and irrotational
 c) quasiequilibrium
 d) satisfy the conformal-thin-sandwich equations
Fully GRHD simulations accounting for HMNS cooling with an effective emissivity

• **Goal**: Assess the importance of shock-induced thermal pressure support in an HMNS formed following the merger of a NSNS

• **Binary NS initial data** (LORENE generated and publicly available):
 a) equal-mass, $n=1$ polytropic
 b) circular orbit and irrotational
 c) quasiequilibrium
 d) satisfy the conformal-thin-sandwich equations

• **Strategy**: Evolve through inspiral, merger, and HMNS formation (Illinois GR hydro, AMR code)
 - Continue without cooling
 - Continue with cooling
Fully GRHD simulations accounting for HMNS cooling with an effective emissivity

- **Goal**: Assess the importance of shock-induced thermal pressure support in an HMNS formed following the merger of a NSNS

- **Binary NS initial data** (LORENE generated and publicly available):
 a) equal-mass, n=1 polytropic
 b) circular orbit and irrotational
 c) quasiequilibrium
 d) satisfy the conformal-thin-sandwich equations

- **Strategy**: Evolve through inspiral, merger, and HMNS formation (Illinois GR hydro, AMR code)
 - Continue without cooling
 - Continue with cooling

Compare
Inspiral, merger and HMNS formation: Orbital-plane rest-mass density
Merger and HMNS formation:
Entropy parameter $K = (P_{th} + P_{cold})/P_{cold}$

Red: $K \approx 1.6$
Yellow: $K \approx 1.4$
Blue: $K \approx 1$
Merger and HMNS formation: Entropy parameter $K = \frac{P_{th} + P_{cold}}{P_{cold}}$

Red: $K \approx 1.6$
Yellow: $K \approx 1.4$
Blue: $K \approx 1$

Total of 40%-60% additional pressure!
Merger and HMNS formation: Entropy parameter $K = (P_{th} + P_{cold})/P_{cold}$

- Red: $K \approx 1.6$
- Yellow: $K \approx 1.4$
- Blue: $K \approx 1$

Total of 40%-60% additional pressure!

- HMNS rms temperature ~ 5.5 MeV $\rightarrow t_{cool} \sim 165$ms

Comparable to the GW time scale!
Merger and HMNS formation:
Entropy parameter $K = (P_{th} + P_{cold}) / P_{cold}$

- **HMNS rms temperature** ~ 5.5 MeV → $t_{cool} \sim 165$ ms

Comparable to the GW time scale!

- Total of 40%-60% additional pressure!

Will the HMNS collapse if cooled?
Cooling study: HMNS collapses following cooling

- Choose t_{cool} sufficiently longer than t_{dyn}, but short enough for computational efficiency.

<table>
<thead>
<tr>
<th>Case Name<sup>(a)</sup></th>
<th>Cooling?</th>
<th>Cooling time scale, τ/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No</td>
<td>∞</td>
</tr>
<tr>
<td>B1</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td>B2</td>
<td>Yes</td>
<td>300</td>
</tr>
</tbody>
</table>
Cooling study:
HMNS collapses following cooling

- Choose t_{cool} sufficiently longer than t_{dyn}, but short enough for computational efficiency.

<table>
<thead>
<tr>
<th>Case Name$^{(a)}$</th>
<th>Cooling?</th>
<th>Cooling time scale, τ/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No</td>
<td>∞</td>
</tr>
<tr>
<td>B1</td>
<td>Yes</td>
<td>150</td>
</tr>
<tr>
<td>B2</td>
<td>Yes</td>
<td>300</td>
</tr>
</tbody>
</table>

- Results
Summary

We demonstrated a few simple points of principle:

- $t_{\text{cool}} \sim t_{\text{GW}} \sim t_{\text{Alfven}}$ is possible

- P_{thermal} can be an important source of support against collapse for HMNSs formed following the merger of binary NSs.

- Cooling physics is important to include in NSNS merger calculations to accurately determine the lifetime of HMNSs, and to extract physical information (cooling mechanisms, B-fields, bar instabilities etc.) from GW observations.
Fully GRHD simulations accounting for HMNS cooling with an effective emissivity

- Radiative Cooling:
 - Perfect fluid stress-energy tensor:
 \[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + Pg^{\mu\nu} \]
 \[\varepsilon = \rho_0 (1 + \epsilon_{th} + \epsilon_{cold}) \]

- Contract the energy momentum conservation with \(u^\alpha \) to derive
 \[\nabla_\alpha T^{\alpha\beta} = G^\beta \]
 \[\frac{d}{d\tau} \epsilon_{th} = \frac{P_{th}}{\rho_0^2} \frac{d}{d\tau} \rho_0 - \frac{1}{\rho_0} u^\alpha G_\alpha \]
 in the fluid rest frame
Radiative Cooling:
- Perfect fluid stress-energy tensor:
 \[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + Pg^{\mu\nu} \]
 \[\varepsilon = \rho_0(1 + \varepsilon_{th} + \varepsilon_{cold}) \]

- Contract the energy momentum conservation with \(u^\alpha \) to derive
 \[
 \frac{d}{d\tau} \varepsilon_{th} = \frac{P_{th}}{\rho_0^2} \frac{d}{d\tau} \rho_0 - \frac{1}{\rho_0} u^\alpha G_\alpha
 \]
 in the fluid rest frame

Effective emissivity
Radiative Cooling:

- Perfect fluid stress-energy tensor:
 \[T^{\mu\nu} = (\varepsilon + P)u^\mu u^\nu + Pg^{\mu\nu} \]
 \[\varepsilon = \rho_0 (1 + \epsilon_{\text{th}} + \epsilon_{\text{cold}}) \]

- Contract the energy momentum conservation with \(u^\alpha \) to derive
 \[\frac{d}{d\tau} \epsilon_{\text{th}} = \frac{P_{\text{th}}}{\rho_0^2} \frac{d}{d\tau} \rho_0 - \frac{1}{\rho_0} u^\alpha G_\alpha \]
 in the fluid rest frame

- Choose
 \[\frac{1}{\rho_0} u^\alpha G_\alpha = \frac{\epsilon_{\text{th}}}{\tau_c} \]

- Eventually:
 \[\frac{d}{d\tau} \epsilon_{\text{th}} = \left[\frac{(\Gamma_{\text{th}} - 1)}{\rho_0} \frac{d\rho_0}{d\tau} - \frac{1}{\tau_c} \right] \epsilon_{\text{th}} \]

Exponential cooling
Cooling study: Additional effects due to cooling

- Angular momentum is conserved to within 3%.

- Cases with cooling emit GWs more strongly.

- Thus, cooling accelerates the collapse by the combined action of two effects:
 a) it drains thermal support
 b) HMNS remnant becomes more compact, emitting GWs more strongly → angular momentum is removed faster.