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Why Massive Gravity?
Massive Gravity Theories are a remarkably a 
constrained modification of general relativity 
at large distance scales - graviton is assumed to 
acquire a mass

They are interesting in that as in GR, there are 
a finite number of consistent allowed terms in 
the Lagrangian that do not give rise to ghosts

In present talk I shall only be concerned with 
models where this occurs without breaking 
Lorentz or de Sitter symmetries



Markus Fierz and Wolfgang Pauli, 
1939

�hµ� + · · · = m2(hµ� � �µ�h)

Fierz-Pauli mass term

guarantees 5 rather than 6 
propagating degrees of 
freedom

1

Massless spin-two in Minkowski makes sense!

5 = 2s + 1

By Massive Gravity we mean a nonlinear completion of Fierz-Pauli 
coupled to matter



Why Massive Gravity?
Adding a mass to gravity weakens the strength 
of gravity at large (cosmological) distances

But thats not all!

Screening mechanism

VY ukawa ⇠ e�mr

r

Degravitation mechanism?

Self-acceleration?



Why Massive Gravity?

Gravitons can condense to form a condensate 
whose energy density sources self-acceleration

Analogous to well-known mechanism in Dvali-
Gabadadze-Porrati model (DGP), however here it 
seems possible to remove the DGP ghost??

Self-acceleration?

Deffayet 2000

Koyama 2005
Charmousis 2006

⇢matter ⇠ 0 H ⇠ m 6= 0



Why Massive Gravity?
Gravitons can condense to form a condensate whose 
energy density compensates the cosmological constant

Screening mechanism - The Cosmological Constant can be 
LARGE with the cosmic acceleration SMALL

In a Massive Theory - the c.c. is a `redundant’ 
operator



Why Massive Gravity?

Gµ⌫ +m2 @LM

@gµ⌫
= �⇤gµ⌫

Graviton condensate:
Spacetime is Minkowski in presence of an arbitrary large 

m2 @LM

@gµ⌫
= �⇤gµ⌫gµ⌫ =

✓
1 + f

✓
⇤

m2

◆◆
⌘µ⌫

⇤

Gµ⌫ = 0

Equivalent Statement: The cosmological constant can be reabsorbed into a 
redefinition of the metric and coupling constants - and is hence a 

redundant operator

mass term



Why Massive Gravity?

Screening Degravitation

One strong motivation for considering Massive Gravity is as a 
toy model of higher dimensional gravity models (eg Cascading 
Gravity) that potentially exhibit degravitation

so far it is safe to say that this idea has not YET been fully realized 

Degravitation = Dynamical Evolution to a    
Screened Solution from generic initial 

conditions
Dvali, Hofmann, Khoury 2007

de Rham et al 2007



Vainshtein Screening mechanism ensures 
recovery of GR in limit m ! 0

Why Massive Gravity?
Departure from GR is governed by essentially 
a single parameter - Graviton Mass

This ensures massive gravity can be easily 
made to be consistent with most tests of GR 
(effectively placing an upper bound on m) 
without spoiling its role as an IR modification



Why Massive Gravity?
Massive Gravity is a natural Infrared Completion of              

Galileon Theories

The allowed Galileon Interactions are in direct 
correspondence with the allowed MG interactions

de Rham and Renaux-Petel 2012 

de Rham and Gabadadze 2010

Galileon: Nicolis, Rattazzi, 
Trincherini 2010

Decoupling limit of Massive Gravity on Minkowski is a 
Galileon Theory

Decoupling limit of Massive Gravity on de Sitter is a 
Galileon Theory (with slightly different coefficients)



Why Massive Gravity?

Massive Gravity models share many nice features in common with 
extra dimensional models such as DGP and Cascading Gravity .....

e.g. Vainshtein mechanism, Galileon limit, self-acceleration, 
possible screening

.... however without the difficulty of having to solve fundamentally 
higher dimensional equations



Ghost-free Massive Gravity

Proven fully ghost free in ADM formalism: Hassan and Rosen 
2011

Result reconfirmed in Stueckelberg decomposition:
de Rham, Gabadadze, Tolley 2011

Hassan, Schmidt-May, von Strauss 2012
Kluson 2012

Result reconfirmed in helicity decomposition:
de Rham, Gabadadze, Tolley 2011

de Rham, Gabadadze, Tolley, PRL, 106, 231101 (2011)

Now several other proofs:  Mehrdad Mirbaryi 2011, AJT to appear

to inflation[31–34]. This theory as a whole also appears to be part of a larger family of
massive theories of gravity[30] some of which first emerged in the study of AdS4/CFT3

correspondence.

2 dRGT Massive Gravity

The theory of massive gravity defined on an arbitrary reference metric fµν is just a
straightforward generalization of the theory proposed in [20]. The Lagrangian takes
the form of Einstein gravity with matter plus a potential that is a scalar function of
the two metrics

L = M2
Pl

√

− (4)g
(

(4)R + 2m2U(g, f)
)

+ LM . (2.1)

The most general potential U that has no ghosts [20] is build out of characteristic
polynomials of the eigenvalues of the tensor

Kµ
ν (g, f) = δµν −

√

gµαfαν (2.2)

so that
U(g,H) = U2 + α3U3 + α4U4, (2.3)

where the αn are free parameters, and

U2 =
(

[K]2 − [K2]
)

, (2.4)

U3 =
(

[K]3 − 3[K][K2] + 2[K3]
)

, (2.5)

U4 =
(

[K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]
)

, (2.6)

where [. . .] represents the trace of a tensor with respect to the metric gµν . The absence
of ghost for this theory for a Minkowski background metric was shown in the decoupling
limit in [17, 18, 20], fully non-linearly beyond the decoupling limit in [21, 22], as well
as in the Stückelberg and helicity languages in [23, 24].

Varying with respect to the metric gµν we find the equations of motion

Gµν +m2Xµν = M−2
pl Tµν (2.7)

where

Xµν = −
[

Kgµν −Kµν + η

(

K2
µν −KKµν +

1

2
gµν
(

[K]2 − [K2]
)

)

(2.8)

+6ρ

(

K3
µν −KK2

µν +
1

2
Kµν

(

[K]2 − [K2]
)

−
1

6
gµν
(

[K]3 − 3[K][K2] + 2[K3]
)

)

]

.

Using the Bianchi identities, we obtain the following constraint on the metric

m2∇µXµν = 0, (2.9)

Here we have defined the coefficients α and β which are related to those of (2.3) by
α3 = −(−η + 1)/3 and α4 = −ρ/2 + (−η + 1)/12.
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dRGT model: allowed mass terms

Build out of 
unique 

combination

Mass terms are 
characteristic 
polynomials

Finite number of allowed 
interactions in any dimension

Interactions protected by a 
Nonrenormalization theorem

de Rham, Gabadadze, Tolley 2011

Kµ
� = �µ� �

�
gµ�f��

U(g, f) =
�

i

�iUi(K)

det(�µ
� + �Kµ

�) =
n=d�

n=0

�nUn(K)

     Generalized to arbitrary (dynamical - bigravity) 
reference metrics by Hassan, Rosen 2011



Second Class Constraints

But why does it work??????

Theory requires two second class 
constraints

The first was difficult to show - the 
second was extremely difficult!!!



Upgrading from Second to First Class

In many systems it is more natural to formulate a 
system with two second class constraints as a 
system with one first class constraint

2⇥ 1 second class = 1 local symmetry =

1 first class constraint + 1 gauge choice

We are looking for an extra local/gauge symmetry!



Example: Extra Dimensions
Massless Graviton in 5D has 5 degrees of freedom

because of the existence of 5=4+1 gauge symmetries
15-5 (constraint)-5 (gauge choice)    =   5

DGP model:

S =

Z
d

4
x

p
�g4

M

2
4

2
R4 +

Z
d

4
x

p
�g4LM +

Z
d

5
x

p
�g5

M

3
5

2
R5

More relevantMore irrelevant

Dominates in IRDominates in UV

5d symmetric matrix



Finding the Hidden Symmetry

GOAL: Can we reformulation the 4D ghost-free massive 
gravity theories as theories possessing the same number of 

gauge symmetries as 5D gravity

Advantage: 
1. Local symmetries protect against quantum corrections
2. Starting point for a consistent quantization
3. Proper understanding of helicity zero mode in full nonlinear 
theory
4. Guarantees the correct number of degrees of freedom
5. Coupling to matter must respect symmetry 
6. Useful implications of Ward identities etc.



Main point: How to introduce helicity 
zero mode

ds

2 = N

2
dy

2 + gµ⌫(dx
µ +N

µ
dy)(dx⌫ +N

⌫
dy)

DGP

Massive gravity

gµ⌫ fµ⌫ = @µ�
A@⌫�

B⌘AB

4 Stueckelberg fields = 
4 ADM Shifts

No analogue of N
No analogue of y coordinate transformations



Main point: How to introduce helicity 
zero mode

Need to introduce a NEW Stueckelberg field for a broken 
U(1) symmetry

Previous attempts:
�A = V A + @A⇡

Introduces a new symmetry V A ! V A + @A�

⇡ ! ⇡ � �

Gets correct decoupling limit

 is a Galileon field⇡ ⇡ ! ⇡ + vµx
µ

de Rham, Gabadadze 2010

Arkani-Hamed, Georgi, Schwartz 2003
Creminelli, Nicolis, Papucci, Trincherini 2005



Main point: How to introduce helicity 
zero mode

Previous attempts:
�A = V A + @A⇡

But it fails nonlinearly !!!!!!!!
Alberte, Chamseddine, Mukhanov 2010

Superficially a problem but not really .....
de Rham, Gabadadze, Tolley 2011
Hassan, Schmidt-May, von Strauss 2012

It only indicates we have not correctly introduced the 
helicity zero mode

Arkani-Hamed, Georgi, Schwartz 2003
Creminelli, Nicolis, Papucci, Trincherini 2005



Massive Gravity in the Vierbein 
Formalism

Nibblelink Groot, Peloso, Sexton 2006
Hinterbichler and Rosen 2012

Write metric in terms of vierbeins (vielbeins) 

gµ⌫ = eaµe
b
⌫⌘ab

Introduce Local Lorentz symmetry

eaµ ! ebµ⇤
a
b

gµ⌫ ! gµ⌫⇤a
c⇤

b
d⌘ab = ⌘cd

Write metric in terms of vierbeins 

Lorentz Transformation

Minkowski metric 



Massive Gravity in the Vierbein 
Formalism

Write reference (Minkowski) metric in terms of vierbeins 

Most general reference vierbein is ... 

Write metric in terms of vierbeins 

Nibblelink Groot, Peloso, Sexton 2006
Hinterbichler and Rosen 2012



Massive Gravity in the Vierbein 
Formalism

Under a local Lorentz transformation

Write metric in terms of vierbeins 

Under a diff (coordinate) transformation

transform as scalarsand

The      are the Stueckelberg fields for the broken Lorentz 
invariance



Allowed dRGT mass terms

Write metric in terms of vierbeins 

All the mass terms arise as characteristic polynomials in the 
expansion of a determinant

Proof (Nibblelink et al.)

Varying w.r.t. gives constraint



Allowed dRGT mass terms

Write metric in terms of vierbeins 

more abstractly this says

but

and so .......

since the       are Lorentz Stueckelbergs 

which implies .......
The Famous Square 
Root of the dRGT 

model



Introducing the Helicity Zero mode

Perturbatively spotted by Mirbabayi, 1112.1435
Nonperturbatively (AJT to appear)

Local Symmetries: 4 coordinate transformations
6 local Lorentz transformations
1 `previously hidden’ U(1) symmetry



The answer

This only works if we can show that the equations of 
motion for the helicity zero mode

After some hard work .... this can be proven

looks not dissimilar although not the same as 
a gauged covariant Galileon

(AJT to appear)



Summary 
 Formulated dRGT massive gravity in D dimensions with the same 
number of first class constraints corresponding to the number of 

symmetries as in (D+1) dimensional General Relativity

The extra U(1) symmetry guarantees the correct number of 
degrees of freedom and absence of BD ghost

It provided a suitable starting point for a consistent 
quantization and coupling to matter

It allows us to define what we mean by the helicity zero 
mode about in an arbitrarily curved geometry

In this form there are no second class constraints


