SDSS-II Photometrically-Classified Type Ia Supernova

Heather Campbell

Thanks to all my collaborators in the SDSS II SN survey
• Motivation
• Data – SDSSII SN survey and BOSS host z
• Photometric Classification
• Selection cuts: Choosing with Simulations
• Selection cuts: Data
• Hubble Diagram
Motivation

• How do we do SN surveys in the future?

• *SDSS* + *BOSS* is a case study

• Cosmology from a photometrically classified sample of hundreds of SNe

• Also unbiased compare to spectroscopic surveys (good check of past results)

Dark Energy Survey Camera
SDSS II Supernovae Project

• Ran for 3 seasons between 2005 and 2007

• Regularly scanned “Stripe 82”

• Database of 10,000s of transient objects

• SDSS II SN survey 504 spec Ia

• Cosmological analysis of the first year SDSS II data

The Sloan Telescope
SDSS II Supernovae Project

- Ran for 3 seasons between 2005 and 2007
- Regularly scanned “Stripe 82”
- Database of 10,000s of transient objects
- SDSS II SN survey 504 spec Ia
- Cosmological analysis of the first year SDSS II data
BOSS Host Galaxy Follow up

• Spec z – Anchors SNe on Hubble diagram
 – Improves classification & light curve fit

• Large sample of Host galaxy spectra: investigate intrinsic scatter

• Plates drilled with 1000 holes

• 3655 targets:
 1) Probability of being a SNe>0.2 (2654)
 2) Random sample of transients (1001)
• **3392** galaxies with accurate redshifts (263 lost)

• 2433 from main sample (black)

• 959 from random sample (blue)

• Complete to 22 magnitude
Fig. 3.— Spectra from BOSS, top left is a low redshift galaxy, which has a high continuum, whereas the spectra on the top right has virtually no continuum, but several clear emission lines, and is at a slightly higher redshift. The bottom two are higher redshift, ranging between $0.3 < z < 0.4$.

Plate 3607 Fiber 316 MJD=55186

GALAXY
$X^2 = 1.04$

z = 0.04592

Flux [10^{-17} erg/s/cm²/Ång]

Observed Wavelength [Ång]

Plate 4219 Fiber 71 MJD=55480

GALAXY
$X^2 = 1.09$

z = 0.43038

Flux [10^{-17} erg/s/cm²/Ång]

Observed Wavelength [Ång]
PSNID Photometric Classification

\[E_{Ia} = \int P(z) e^{-\frac{x^2}{2}} dz dA_v dT_{max} d\Delta m_{15,B} d\mu, \]

\[P(z) = \frac{1}{\sqrt{2\pi}\sigma_z} e^{-\frac{(z-z_{ext})^2}{2\sigma_z^2}}. \]

\[P_{type} = \frac{E_{type}}{E_{Ia} + E_{Ibc} + E_{II}} \]

- Fits templates to the light curves to find lowest \(\chi^2 \)

- *Host redshift used as a prior*

- Calculated Bayesian probabilities of the SN being a Type Ia, Type Ib/c or Type II
Data cuts and SALT

- Sako et al. classifier is good, but how do I make a cosmology sample?
- Data cuts quality
- Cuts on probability
- Cuts on salt parameters (really a 3D space)
SALT2 Light Curve Fitting

\[\mu = m_\star_B - M + \alpha X_1 - \beta c \]

\[m_\star_B = -2.5 \log_{10}(X_0) \]
Simulations to Optimize
Selection cuts

- Public SDSS SN Simulations (Kessler) created using SNANA

- Redshift range and observing conditions to replicate SDSS SN survey.

- 5018 Type Ia

- 7185 Non Ia

- Run all simulated SN through classifier and fitted light curves

\[E_{\text{Ia}} = \frac{N_{\text{true}}}{N_{\text{cut}}} \]

\[P_{\text{Ia}} = \frac{N_{\text{true}}}{N_{\text{true}} + N_{\text{false}}} \]

\[FoM(5)_{\text{Ia}} = \frac{N_{\text{true}}}{N_{\text{cut}}} \frac{N_{\text{true}}}{N_{\text{true}} + W_{\text{false}} N_{\text{false}}} \]
Selection cuts: Simulations
Probability and X^2

- $P_{Ia} > P_{\text{non}}$ (inclusive)
- $X^2 > 1.2$ (peak of FoM)

- Light curve quality cuts:
 - $-5 < 1 \text{ epoch } <+5$
 - $+5 < 1 \text{ epoch } <+15$
Selection cuts: Simulations
SALT2 Parameters 3D space
Selection cuts: Simulations
SALT2 Parameters Color and X1

- Color and X1 cut an ellipse

\[
\frac{y^2}{a^2} + \frac{(x + 0.2)^2}{b^2} = 1 - 0.02
\]

\[a = \text{semi-major axis} = 3 \text{ (X1 axis)}\]
\[b = \text{semi-minor axis} = 0.25 \text{ (color axis)}\]

Center at (-0.2, -0.02)
Selection cuts: Simulations
SALT2 Parameters Color and X1

Heather Campbell ICG
Selection cuts: Simulations

Color vs magnitude cut

- i-band – z-band vs i-band
 > blue line shown (peak of FoM)
Selection cuts: Simulations

All cuts summary

<table>
<thead>
<tr>
<th>Selection cut</th>
<th>Contamination</th>
<th>Efficiency</th>
<th>FoM (W=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{Ia} > P_{non}$</td>
<td>41.7%</td>
<td>99%</td>
<td>21.7%</td>
</tr>
<tr>
<td>$X^2 \geq 1.2$</td>
<td>27.8%</td>
<td>91.8%</td>
<td>31.4%</td>
</tr>
<tr>
<td>X1, color ellipse</td>
<td>8.1%</td>
<td>71.6%</td>
<td>49.6%</td>
</tr>
<tr>
<td>i-band – z-band vs i-band</td>
<td>3.7%</td>
<td>70.9%</td>
<td>59.8%</td>
</tr>
</tbody>
</table>
Selection cuts: Simulations
All cuts Hubble Diagram

After all cuts have:

- **Purity** = 96.3%
- **Efficiency** = 70%
- **FoM** ($W=5$) = 60%
- 2644 Type Ia
- 98 non Ia
Selection cuts: Data
Probability, X^2, Color and X1 ellipse

- Light curve quality cuts:
 - $-5 < 1 \text{ epoch} <+5$
 - $+5 < 1 \text{ epoch} <+15$

- $P_{\text{Ia}} > P_{\text{non}}$

- $X^2 > 1.2$

- Color vs X1 ellipse
Selection cuts: Data
Color vs Magnitude cut

• i-band – z-band vs i-band > blue line
Selection cuts: Summary

<table>
<thead>
<tr>
<th>Selection Cut</th>
<th>Number SNe removed</th>
<th>Number of SNe kept</th>
<th>Number Spec Ia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate Redshift</td>
<td></td>
<td>3392</td>
<td>289</td>
</tr>
<tr>
<td>Quality</td>
<td>1429</td>
<td>2515</td>
<td>221</td>
</tr>
<tr>
<td>(P_{\text{Ia}} > P_{\text{non}})</td>
<td>552</td>
<td>1963</td>
<td>219</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>587</td>
<td>1376</td>
<td>213</td>
</tr>
<tr>
<td>Color and X1 cut</td>
<td>614</td>
<td>762</td>
<td>187</td>
</tr>
<tr>
<td>i-band – z-band vs i-band cut</td>
<td>23</td>
<td>739</td>
<td>187</td>
</tr>
</tbody>
</table>
Photometric Hubble Diagram

739 SN with host redshifts on Hubble Diagram
Can it get better?

- Cut on host distance
- Photoz
- Other color plane cuts
Steps to Cosmology

- Summary!
- Malmquist bias - simulations can help
- Host galaxy (We have all the spectra!)
- Systematic errors
Summary

- 3394 reliable host galaxy redshifts
- Photometric classification of SNe, using host z as a prior.
- New Hubble diagram with 739 SN Ia (187 spec Ia, and 552 New)
- Very important for the next generation of SNe surveys
Extra slides!
Quality Criteria: Host galaxy cut

- Distance to Host Galaxy cut:
 - If the separation between SNe and host galaxy is > 15kpc then candidate is removed
Bias Tests: Malmquist Bias

- 30,000 SNe Ia SNANA simulations
- Model for the Malmquist bias as a function of redshift.
- 10 random samples, size and redshift distribution of photometric sample
- Cosmological analysis with and without Malmquist Bias correction
- All samples were $>> 2\sigma$ away from input w without correction and $<< 1\sigma$ when included.
- Checked correction not stretch or cosmology dependent

\[\Delta \mu = \mu_{\text{obs}} - \mu_{\text{exp}} \]

Fig. 12.— Plot of the Malmquist bias which is found by taking the difference between the observed distance modulus μ_{obs} and the expected distance modulus μ_{exp} as a function of redshift, in δz bins of 0.02. The errors are the errors on the weighted mean. The line is the linear fit to the plot and is used as the Malmquist bias correction.

Heather Campbell ICG
Bias Tests: Malmquist bias

- Spec SNe Ia at a given redshift have systematically higher S/N than the photo Ias.

- $z > 0.3$ we see effect of $S/N > 5$ selection cut, curtailing the distribution.

- Leads to the “Malmquist bias”

- See same in simulations
Host Galaxy Correlations

- Have spectra for all hosts
- SALT2 X1 color distributions in Red/blue galaxies: SALT color same in both galaxies, X1 different, same relation at all distances from centre of galaxy
- Host masses form BOSS pipelines (cosmology corrected for the host galaxy mass correlation)
Host Galaxy Correlations

- Have spectra for all hosts
- SALT2 X1 color distributions in Red/blue galaxies: SALT color same in both galaxies, X1 different, same relation at all distances from centre of galaxy
- Host masses form BOSS pipelines (cosmology corrected for the host galaxy mass correlation)
Systematic Errors

Instrumental:
- Photometric calibration
- Light curve fitting techniques

Astrophysical:
- Correlations with hosts galaxy properties
- SN lensing
- Peculiar velocities
- Galactic dust
- Possible SN evolution
Implications for DES

• Possible to use photometrically classified supernovae for cosmological analysis – Good for DES which can’t follow up all SNe

• Host galaxy z are important for classification and Hubble diagram - minimum DES needs for each SNe

• Low contamination – appears to create no bias on cosmology

• Need to model the Malmquist bias for magnitude limited samples