Chemistry of Ultra-Faint Dwarf Galaxies in the Dark Energy Survey

Jen Marshall, Dan Nagasawa
Texas A&M University

Terese Hansen, Josh Simon, Rebecca Bernstein
Carnegie Observatories

Ting Li, Fermilab; Kyler Kuehn, AAO

and the DES Milky Way Working Group
20+ satellites discovered by DES

Stellar density field from SDSS and DES

Blue = Known prior to 2015
Red triangles = DES Y2Q1 candidates
Red circles = DES Y1A1 candidates
Green = Other new candidates

DES footprint in Galactic coordinates (~5000 deg²)

Bechtol+2015
Drlica-Wagner+2015
20+ satellites discovered by DES

- DES satellites have lower masses than previously-known dwarfs
- Potential for single nucleosynthetic event to influence all stars in galaxy
- Physical isolation (and reionization) preserves “fossil record” until today

Drlica-Wagner+2015
• Hor I has solar-type abundances, very unusual for a metal-poor stellar population

Red points: Hor I stars; colored points: stars in other UFDs; grey points: MW halo stars

Nagasawa+2018
Tucana II chemistry

• Tuc II has chemical diversity
• May be a surviving “first galaxy”
 – But for one rogue star

Ji+2016a;
Chiti+2018
Detailed chemical abundance patterns of stars in Ret II show high levels of rapid neutron-capture element enhancement (r-II).

Suggested explanation is a binary neutron star merger early in this small galaxy polluted the entire population of stars.
• Brightest star studied by Hansen+2017 shown to be mildly \(r \)-process enhanced (\(r-I \))

• Four more stars observed in core+tails, Li+2018

Grey lines define \(r-I \) stars; red squares are Ret-II stars

Marshall, Hansen+ \textit{in prep}
All five stars in Tuc III are r-I stars
- One star has some s-process as well

Grey lines define r-I stars; red squares are Ret-II stars

Solid: scaled solar r-process; dashed: scaled solar s-process

Marshall, Hansen+ in prep
The Origin of the Solar System Elements

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>big bang fusion</td>
<td>2</td>
<td>He</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>merging neutron stars</td>
<td>4</td>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>dying low mass stars</td>
<td>12</td>
<td>Mg</td>
<td>exploding massive stars</td>
<td>5</td>
<td>B</td>
<td>6</td>
<td>C</td>
<td>7</td>
<td>N</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td></td>
<td>20</td>
<td>Ca</td>
<td>exploding white dwarfs</td>
<td>21</td>
<td>Sc</td>
<td>22</td>
<td>Ti</td>
<td>23</td>
<td>V</td>
<td>24</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td></td>
<td>38</td>
<td>Sr</td>
<td></td>
<td>39</td>
<td>Y</td>
<td>40</td>
<td>Zr</td>
<td>41</td>
<td>Nb</td>
<td>42</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td></td>
<td>56</td>
<td>Ba</td>
<td></td>
<td>72</td>
<td>Hf</td>
<td>73</td>
<td>Ta</td>
<td>74</td>
<td>W</td>
<td>75</td>
</tr>
<tr>
<td>87</td>
<td>Fr</td>
<td></td>
<td>88</td>
<td>Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Fe</td>
<td></td>
<td>27</td>
<td>Co</td>
<td></td>
<td>28</td>
<td>Ni</td>
<td>29</td>
<td>Cu</td>
<td>30</td>
<td>Zn</td>
<td>31</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td></td>
<td>50</td>
<td>Sn</td>
<td></td>
<td>51</td>
<td>Sb</td>
<td>52</td>
<td>Te</td>
<td>53</td>
<td>I</td>
<td>54</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td></td>
<td>58</td>
<td>Ce</td>
<td></td>
<td>59</td>
<td>Pr</td>
<td>60</td>
<td>Nd</td>
<td>61</td>
<td>Pm</td>
<td>62</td>
</tr>
<tr>
<td>89</td>
<td>Ac</td>
<td></td>
<td>90</td>
<td>Th</td>
<td></td>
<td>91</td>
<td>Pa</td>
<td>92</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphic created by Jennifer Johnson

Astronomical Image Credits:
ESA/NASA/AASNova
Cartoon of the theoretical phases of a binary neutron star merger event

Image credit: “Enrichment history of r-process elements shaped by a merger of neutron star pairs” Tsujimoto & Shigeyama 2014

Theoretical models make specific predictions of how these events should evolve with time.
Image credit: Las Cumbres Observatory
LIGO announces first GW signature of a binary NS merger

“Multi-messenger Observations of a Binary Neutron Star Merger”, LIGO scientific collaboration, VIRGO collaboration, and partner astronomy groups (including 3600+ authors!), 2017

Electromagnetic counterpart imaging followup
DECam is a great instrument for LIGO followup

Even with Virgo, LIGO’s localization of GW events was not very precise

DECam’s large FOV covered the region in only 10 pointings; Soares-Santos+2017
The future

- We will soon have observed every DES satellite star that can be studied at high resolution with today’s telescopes

DES Y1 candidates; Bechtol+2015
The future

• We will soon have observed every DES satellite star that can be studied at high resolution with today’s telescopes

• LSST should find ~100 more ultra-faint dwarfs
 – But only after several years

• Next generation telescopes will be essential in studying additional stars in the DES dwarfs as well as new objects discovered by LSST and others
GMT first light instruments

GMACS: the wide-field, moderate resolution multiobject spectrograph

The Giant Magellan Telescope

G-CLEF: an extreme precision radial velocity spectrograph
The future

• We will soon have observed every DES satellite star that can be studied at high resolution with today’s telescopes

• LSST should find ~100 more ultra-faint dwarfs
 – But only after several years

• Next generation telescopes will be essential in studying additional stars in the DES dwarfs as well as new objects discovered by LSST and others

• By studying chemistry of satellites and halo stars, we will likely know the production sites of all elements on the Periodic Table in the next few years