## Modeling Subhalos and Satellites in Milky Way-like Systems

Ethan Nadler (Stanford/KIPAC)













Lovell et al. 2011



# Modeling Milky Way Satellites



How do the MW satellite luminosity function, radial distribution, and size distribution constrain the low-mass galaxy-halo connection?



| Physical Ingredient        | Assumptions                                         | Parameterization                                                                        | Fixed for this analysis?                 |
|----------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------|
| 3.1 Host Halo Properties   | Fixed by zoom-in simulations                        | None                                                                                    | Yes $(M = 10^{12.1 \pm 0.03} M_{\odot})$ |
| 3.2 Satellite Luminosities | Abundance match to GAMA survey                      | Non-parametric                                                                          | Yes                                      |
|                            | Extrapolate subhalo $V_{\text{peak}}$ function      | Faint-end slope $\alpha$                                                                | No ( $\alpha$ is free)                   |
|                            | Lognormal magnitude distribution                    | Constant scatter $\sigma_M$                                                             | No ( $\sigma_M$ is free)                 |
|                            | Subhalos below $M_{\text{peak}}$ threshold are dark | Cut on $M_{\text{peak}} < \mathcal{M}_{\min}$                                           | No ( $\mathcal{M}_{min}$ is free)        |
| 3.3 Satellite Locations    | On-sky positions set by subhalos                    | None                                                                                    | Yes                                      |
|                            | Distances set by scaled subhalo radii               | $r_{\rm sat} = \chi r_{\rm sub}$                                                        | <b>Yes</b> ( $\chi = 0.93$ )             |
| 3.4 Satellite Sizes        | Jiang et al. (2018) sizes at accretion              | $r_{1/2} = A(c/10)^{\gamma} R_{\rm vir}$                                                | <b>Yes</b> ( $A = 0.02, \gamma = -0.7$   |
|                            | Size reduction set by stripping                     | $r'_{1/2} = r_{1/2} (V_{\text{max}} / V_{\text{acc}})^{\beta}$                          | Yes $(\beta = 0)$                        |
|                            | Lognormal size distribution                         | Constant scatter $\sigma_R$                                                             | Yes ( $\sigma_R = 0.01 \text{ dex}$ )    |
| 3.5 Baryonic Effects       | Nadler et al. (2018) disruption model               | $p_{\text{disrupt}} \rightarrow p_{\text{disrupt}}^{1/\mathcal{B}}$                     | No ( $\mathcal{B}$ is free)              |
| 3.6 Orphan Satellites      | Correspond to disrupted subhalos                    | None                                                                                    | Yes                                      |
|                            | NFW host + dynamical friction                       | $\ln \Lambda = -\ln(m/M)$                                                               | Yes                                      |
|                            | Stripping after pericentric passages                | $\dot{m}_{\rm outgoing} \sim -\frac{m}{\tau_{\rm dyn}} \left(\frac{m}{M}\right)^{0.07}$ | Yes                                      |
|                            | Disruption probability set by stripping             | $p_{\rm disrupt} = (1 - V_{\rm max}/V_{\rm acc})^{\mathcal{O}}$                         | $Yes (\mathcal{O} = 0.5)$                |

### Nadler et al. in prep.





# Model Building: Luminosities

- Abundance match to GAMA luminosity function (measured down to  $M_r \sim -12$ )
- Parameters: abundance matching slope, scatter, galaxy formation threshold



# Model Building: Sizes



Does the tight relationship between galaxy size and halo size hold for ultra-



# Baryonic Subhalo Disruption





# **Baryonic Subhalo Disruption**











 $\lambda_i( heta)^{N_{\mathrm{obs},i}}$ Fit to observed properties (Poisson process):  $P(\{M_V, r_{\odot}, r_{1/2}\}|\theta) = e^{-\langle N_{mock}(\theta) \rangle} \prod$ 





Fit to observed satellites (Poisson process):  $P(\{M_V, r_{\odot}, r_{1/2}\}|\theta) = e^{-\langle N_{\text{mock}}(\theta) \rangle} \prod$ bins

![](_page_10_Figure_2.jpeg)

# Predictions for Future Surveys

![](_page_11_Figure_1.jpeg)

![](_page_11_Figure_2.jpeg)

# DES Y3 Milky Way Satellites

![](_page_12_Figure_1.jpeg)

### Drlica-Wagner et al. 2015

with Keith Bechtol, Alex Drlica-Wagner, Sidney Mau, Risa Wechsler

![](_page_12_Picture_4.jpeg)

# **DES Survey Selection Function**

- Inject fake satellites into DES data; train algorithm to model detection efficiency
- Surface brightness, number of detected stars drive satellite detectability

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

# **DES Survey Selection Function**

- Projections of detection probability in physical parameter space:

![](_page_14_Figure_3.jpeg)

• Algorithm trained on satellite magnitude + size + distance remains accurate

![](_page_14_Figure_6.jpeg)

![](_page_15_Figure_1.jpeg)

 $\mathcal{M}_{\min} = 1.0 \times 10^8 M_{\odot}$ 

### Halo 416

![](_page_16_Figure_1.jpeg)

 $\mathcal{M}_{\rm min} = 1.0 \times 10^8 \,\mathrm{M}_{\odot}$ 

### Halo 416

 $\mathcal{B}=1, \mathcal{O}=1$ 

![](_page_17_Figure_1.jpeg)

Ľ

 $\mathcal{M}_{\min} = 1.0 \times 10^8 M_{\odot}$ 

![](_page_17_Figure_3.jpeg)

 $\mathcal{B}=1, \ \mathcal{O}=1$ 

![](_page_18_Figure_1.jpeg)

 $\mathcal{M}_{\min} = 1.0 \times 10^8 M_{\odot}$ 

### Halo 416

![](_page_18_Figure_4.jpeg)

- Fold cosmological model through DES footprint + survey selection function

![](_page_19_Figure_3.jpeg)

Predicted luminosity function is sensitive to LMC position and accretion time

![](_page_19_Figure_6.jpeg)

# Interpreting Full-Sky Observations

 $SDSS + DES + Pan-STARRS + ... \longrightarrow full-sky satellite luminosity function$ 

There are significant modeling uncertainties: luminosity/size models, tidal stripping, baryonic effects, orphans, LMC/SMC, ...

Some data-driven questions:

- Are observed/predicted satellite distributions consistent with isotropy?
- Is there evidence for a distinct LMC/SMC satellite population?
- What can we infer about the properties of subhalos that host DES satellites?
- Are the orbits of simulated satellites consistent with results from GAIA?

### Bonus Slides

### Baryonic Subhalo Disruption

- Five subhalo features encode ~90% of disruption
- Predicted subhalo properties consistent with FIRE

![](_page_22_Figure_3.jpeg)

Nadler et al. 2018

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

![](_page_22_Figure_8.jpeg)

![](_page_22_Figure_9.jpeg)

### Peak Velocity Functions

![](_page_23_Figure_1.jpeg)

### Radial Distributions

![](_page_24_Figure_1.jpeg)

### Orbital Velocity Distributions

![](_page_25_Figure_1.jpeg)

### Radial Velocity Distributions

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

### Applications and Extensions

Trained model (github/eonadler) predicts subhalo disruption probabilities Example: 45 MW zoom-ins with range of formation histories (Mao et al. 2015)

Predicted disruption is larger than halo-to-halo scatter!

### Modeling Milky Way Analogs

- Ensemble of MW analog LFs measured by SAGA
- Generalize model for variable host halo mass

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_7.jpeg)

![](_page_28_Figure_8.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_30_Figure_1.jpeg)

### Example: DES Satellites