Simulations of large-scale structure with “AGN” feedback

Dick Bond, Christoph Pfrommer, Jon Sievers, Debora Sijacki

arxiv:1003.4256
Motivation

• Use galaxy clusters as cosmological tool (SZ PS)
• ACT, SPT & Planck (Chandra, XMM, RCs…)

\[C_l = g_v^2 \int_0^{z_{\text{max}}} dz \frac{dV}{dz} \int dM \frac{dn(M, z)}{dM} |\tilde{y}_l(M, z)|^2 \]

• Analytically (e.g KS...B10 in prep: fast CosmoMC plugin)
• SZ sky maps (e.g. Da Silva et al. 00, Springel et al., B02…)
• “Gastrophysics” correct
Motivation

- Use galaxy clusters as cosmological tool (**SZ PS**)
- ACT, SPT & Planck (Chandra, XMM, RCs...)
- Analytically (**e.g. KS...**)
- **SZ** sky maps (**e.g. Da Silva et al. 00, Springel et al., B02...**)
- “Gastrophysics” corrected

\[C_l = g_\nu^2 \int_0^{z_{\text{max}}} dz \frac{dV}{dz} \int dV \]

![Image of galaxy cluster sky map with color scale]
ICM Modeling

X-ray observations

- Match both aperture quantities / profiles / f_{gas}
- Match both aperture quantities / PS / profiles
- f_{star} from optical observations

• Problems

Analytically: HSE, non-thermal....

Simulations: Sub-grid physics, Over-cooling!
ICM Modeling

X-ray observations
- Match both aperture quantities / profiles / f_{gas}
- Sunyaev–Zel’dovich Observations
- Match both aperture quantities / profiles / PS
- f_{star} from Optical observations

• Problems
 - Analytically: HSE, non-thermal pressure support..
 - Simulations: Overcooling

Pfrommer et al. 07
ICM Modeling

X-ray observations

- Match both aperture quantities / profiles / f_{gas}
- Sunyaev–Zel’dovich Observations
 - Match both aperture quantities / profiles / PS
 - f_{star} from Optical observations

• Problems
 - Analytically: HSE, non-thermal pressure support..
 - Simulations: Over-cooling

Over production stars / thermal properties
Our ICM Modeling

X-ray observations
✓ Match both aperture quantities / profiles / f_{gas}
Sunyaev – Zel’dovich observations
✓ Match both aperture quantities / PS / profiles
✓ f_{star} from optical observations

We introduce a form of ”AGN” feedback
→ Does well to match current observations
Previous work on AGN feedback

- Magorrian relation
 \[M_{BH} \propto \sigma^4, \dot{M}_{BH} \propto \dot{M}_{EDD} \]
 Thacker, Sijacki, Bhattacharya, Chatterjee....
 - Run on smaller scales (Quasars/galaxies)

- Estimate Bondi-Hoyle accretion (BH particles)
 Springel, Sijacki, Shaye
 - Require high resolution
 \[
 \dot{M}_{BH} = \frac{\alpha 4\pi G^2 M_{BH}^2 \rho}{(c_s^2 + v^2)^{3/2}}
 \]
AGN Model

- Sub grid (~10^9 [OM]) (Thompson et al. 05)

\[\dot{M}_* \propto \dot{M}_{BH} \]

\[E_{inj} = \varepsilon_r \dot{M}_* c^2 \Delta t \]

- Spherically injecting $E_{inj} \rightarrow R_{AGN}$
- Parameters: Δt, ε_r & R_{AGN}
- ε_r includes many #s

Match previous AGN models
Simulations (many of them)

- TreePM-SPH Gadget-2+
- Single cluster ‘g676’ (Zoom simulation)
- Cosmological box simulations (256³ & 512³)

Models:
- “adiabatic”
- cooling + SF
- AGN feedback

Thank you SciNET (30 k cores) & Sunnyvale
Model comparison/calibration

\[f_{\text{star}} (< r) = \frac{M_{\text{star}} (< r)}{M_{\text{TOT}} (< r)} \]
Observational comparisons

Bonus:
We match Recent X-ray results
• Stacked pressure profiles
Observational comparisons

Bonus:
We match Recent X-ray results
• Stacked pressure profiles
Observational comparisons

Bonus:
We match Recent X-ray results
• Stacked pressure profiles
Power spectra comparisons

Average PS from our simulations
- Rotate & Translate redshift slices
Power spectra comparisons

Average PS from our simulations - Rotate & Translate redshift slices
Cosmological constraints

- Included kSZ spectra
- Templates CosmoMC
- Constraints on A_{SZ} & σ_8
- Using SPT within WMAP7 values for σ_8
Cosmological constraints

- Included kSZ spectra
- Templates CosmoMC
- Constraints on A_{SZ} & σ_8
- Using SPT within WMAP7 values for σ_8
Cosmological constraints

- Included kSZ spectra
- Templates CosmoMC
- Constraints on A_{SZ} & σ_8
- Using SPT within WMAP7 values for σ_8
Conclusions

"AGN" feedback does well
✓ X-ray observations
✓ Sunyaev – Zel’dovich observations
✓ f_{star} from optical observations
✓ Consistent with WMAP7 σ_8

Much more to be done!