The Cosmic Supernova Inventory from Future Sky Surveys: Revealing Invisible Collapse with Neutrinos

Amy Lien (連雅琳) University of Illinois at Urbana-Champaign

Brian Fields (U. of Illinois) John Beacom (Ohio State U.)

Great Lakes Cosmology Workshop 2010

Core-Collapse Supernovae

- Explosions of massive stars
 - Types Ib/c, and II
- Core-collapse rate \propto star formation rate
- > 99% of energy released in neutrinos
- Failed supernovae?
 - Collapse \rightarrow Black hole
 - No optical explosion
 - Neutrino emission same or enhanced!

(MacFadyen & Woosley 1999, Nakazato et al. 2008)

Why now?

- Dr. Kuhlmann & Prof. Wood-Vasey's Talk

- Great survey era (e.g. SDSS, SNLS, DES, Pan-STARRS, LSST)
 - Happening now or next decade.
- > 10^5 CC SNe per year out to $z \sim 1$.
- SN rate by direct counting!
- CC SN rate to high precision
 - Statistical uncertainty <10% in 1 yr
 - Current uncertainty > 40%
- Particle astrophysics with cosmic SNe

Cosmic Supernovae & The Diffuse Supernova Neutrino Background

- Neutrino flux from all cosmic > Example: Probing different supernovae
 - Energy range ~ 10 26 MeV
- Neutrino observatories
 - Expect first detection of background SN neutrinos in next ~ 10 yrs
- Forecast: Surveys + Neutrinos
 - Imagine: SN rate known to z~1
 - Dust effects and SN luminosity distribution understood
 - Assume 5% precision

Conclusions

- Synoptic surveys: SN rate to z ~ 1
 - $\circ\,$ Star-formation rate to high precision out to $z\,<\,1$
- Surveys + neutrinos can distinguish different supernova neutrino models.
- Surveys + neutrinos probe failed supernovae.
- Lessons for surveys:
 - Core-collapse come for free!
 - Not just "Type la noise" but important signal!
 - Report your core-collapse events proudly!

Thank you

Back-Up Slides

Cosmic Star-Formation Rate and Supernova Rate

Forecasts for Synoptic Surveys

- $> 10^5$ CC SNe per year out to $z \sim 1$.
- SN rate by direct counting!
- <10% statistic precision for the CC SNe rate in one year of detection (current uncertainty > 40%).
- LSST plot:
 - Scan area: 20000 deg^2 Proposed limiting magnitude for SNe: 23^{mag} Bin size: $\Delta z=0.1$

Forecast of SN detection in Types

Neutrino Sources from Earth & Sky

Diffuse Supernova Neutrino Background (DSNB)

Neutrinos from supernovae

- $\circ v \& anti-v of all species$
- 10-30 MeV
- Cosmic SNe ~ 10 events/sec
- ~ 10⁵⁹ neutrinos per SN
- Add them up

Supernovae & Neutrinos - What Can We Learn?

- Neutrino detectors: Expect to have first detection of supernova neutrinos in the next ten years
- Strategy/Attitude
 - Imaging that we will be able to measure SN rate out to z~1
 - Dust effects and SN luminosity distribution understood
 - Expecting a 5% precision
- We hope to learn
 - Supernova and neutrino physics
 - Failed supernovae

 Example: Probing different supernova neutrino models

Connecting Supernovae & Neutrinos

- Predict neutrino flux from supernova surveys $\phi_{\nu}^{\text{survey}}$: Add neutrinos from all observed supernovae
- Measure neutrino flux from neutrino detectors ϕ_{ν}^{detect}
- Compare $\phi_{\nu}^{\text{survey}}$ and ϕ_{ν}^{detect}
- We hope to learn
 - Supernova and neutrino physics
 - Failed supernovae
 - Massive stars which collapse directly into black holes without optical explosions.
 - Dust? Weak constraint

Failed Supernovae?

- Massive stars which collapse directly into black holes without optical explosions.
- Current theories suggest:
 - 8 Msun < Mstar < 25 Msun: explode (81%)
 - Mstar > 40 Msun: failed (9%)

- 25 Msun < Mstar < 40 Msun: ??? (10%)
- Most of the failed supernovae create neutrinos with higher energies
- Neutrinos as a tool to probe the fraction of failed supernovae

