Shedding Light on Dark Satellites

Sarah Nickerson, Greg Stinson, Hugh Couchman, Jeremy Bailin, and James Wadsley

> Department of Physics and Astronomy McMaster University

All is not well with ACDM cosmology...

Comparison of Number of Satellites in Dark Matter-Only Simulation to Observations

(from Moore, B. et al. 1999)

Comparison of Number of Satellites in Dark Matter-Only Simulation to Observations

(from Moore, B. et al. 1999)

Comparison of Number of Satellites in Dark Matter-Only Simulation to Observations

(from Moore, B. et al. 1999)

The Missing Satellites Problem

- Could there be satellites out there without any gas or stars that are invisible to observations?
- What would cause them to lose their baryons?
 - Supernovae
 UV background
 Tidal stripping
 Ram pressure

The Simulation

McMaster Unbiased Galaxy Simulations (MUGS) Suite

- High resolution, smoothed particle hydrodynamics in a WMAP3 ACDM cosmology
- About ten million particles
- Step 1: Evolve dark matter-only, uniform 50 (Mpc/h)³ volume to redshift zero
- Step 2: Select random galaxies to get a good sample of angular momentum, mass, and merger history
- Step 3: Resimulate region of interest with higher resolution, more matter and baryons

McMaster Unbiased Galaxy Simulations (MUGS) Suite

- High resolution, smoothed particle hydrodynamics in a WMAP3 ACDM cosmology
- About ten million particles
- Step 1: Evolve dark matter-only, uniform 50 (Mpc/h)³ volume to redshift zero
- Step 2: Select random galaxies to get a good sample of angular momentum, mass, and merger history
- Step 3: Resimulate region of interest with higher resolution, more matter and baryons

My analysis is focussed on one host galaxy's substructure: g15784

- Mass: 1.4x10¹² M_☉
- Mass/Light ~ 6.5

(from Stinson, G. et al. 2010)

2.5 Mpc

redshift 20

Cumulative Mass Function

Meet the Satellites

 Accumulate baryons above the cosmic mean and retain gas and stars to redshift zero

- Accumulate baryons above the cosmic mean and retain gas and stars to redshift zero
- 2. Accumulate enough gas to form stars, but the gas (and rarely the stars too) is stripped before it reaches redshift zero

- Accumulate baryons above the cosmic mean and retain gas and stars to redshift zero
- 2. Accumulate enough gas to form stars, but the gas (and rarely the stars too) is stripped before it reaches redshift zero
- 3. Only have a smattering of gas that is quickly stripped

I. Accumulate baryons above the cosmic mean and retain gas and stars to redshift zero (final mass: $3.9 \times 10^9 M_{\odot}$)

2. Accumulate enough gas to form stars, but gas is stripped before it reaches z=0 (final mass: $2.0 \times 10^8 M_{\odot}$)

Gas-Loss Mechanisms

UV Background

2. Accumulate enough gas to form stars, but gas is stripped before it reaches z=0 (final mass: $2.0 \times 10^8 M_{\odot}$)

UV Background

Redshift 1.0

Redshift 0.8

Stellar Feedback

- A particle affected by stellar feedback from supernovae has its cooling turned off
- This causes it to heat up, and gain enough energy to escape the halo

The Big Picture

I. Accumulate baryons above the cosmic mean and retain gas and stars to redshift zero (final mass: $3.9 \times 10^9 M_{\odot}$)

I. Accumulate baryons above the cosmic mean and retain gas and stars to redshift zero (final mass: $3.9 \times 10^9 M_{\odot}$)

2. Accumulate enough gas to form stars, but gas is stripped before it reaches z=0 (final mass: $2.0 \times 10^8 M_{\odot}$)

• Dark satellites: uv background removes most of the gas, followed by ram pressure stripping

- Dark satellites: uv background removes most of the gas, followed by ram pressure stripping
- Luminous satellites: tidal stripping is more prominent

- Dark satellites: uv background removes most of the gas, followed by ram pressure stripping
- Luminous satellites: tidal stripping is more prominent
- Stellar feedback is surprisingly weak

- Dark satellites: uv background removes most of the gas, followed by ram pressure stripping
- Luminous satellites: tidal stripping is more prominent
- Stellar feedback is surprisingly weak

Whether a satellite ends up dark or luminous is determined by the maximum mass it ever achieves, not is mass at redshift zero

Thank You! GALAXY CAT ASKZ: **DCANHASMOAR** SUBSTRUCTURE

ICANHASCHEEZBURGER.COM 👼 🕻 荣

I. Accumulate baryons above the cosmic mean and retain gas and stars to redshift zero (final mass: $3.9 \times 10^9 M_{\odot}$)

Baryon Fraction as a function of virial/background gas temperature

•With one exception, the only halos that retain baryons at redshift zero are those that had a higher virial temperature than their background gas

Almost all of the halos that have a higher virial than background
 100.0 temperature also begin with high baryon fractions

Stellar Feedback

- A particle affected by stellar feedback has its cooling turned off
- This causes it to heat up, and gain enough energy to escape the halo

The Missing Satellites Problem

Simulation of Dark Matter Halos

Galaxy Cluster

McMaster Unbiased Galaxy Simulations (MUGS) Suite

- High resolution, smoothed particle hydrodynamics in a WMAP3 ACDM cosmology
- Ten million particles
- Step I: Evolve dark matter only, uniform 50 (Mpc/h)³ volume to redshift zero
- Step 2: Resimulate region of interest (the virial radius) with higher resolution, more matter and baryons

Within the virial radius at z=0 for g15784 (the focus of my work):

		individual particle mass (M⊙)	total particles	total mass (M⊙)
	dark	~106	1.1x10 ⁶	1.2x10 ¹²
	stars	~105	2.4×10 ⁶	1.1x10 ¹¹
	gas	~105	4.8×10 ⁵	1.1x10 ¹¹
No. of the second se	total	N/A	~4x106	~I.4xI0 ¹²
Mass/Light ~ 6.5				

Analysis

- To find substructure: Amiga Halo Finder
 - adaptive mesh refinement code
 - hierarchical gridding
- To find a subhalo's luminosity: Starbust 1999
 - For each star, use bi-linear interpolation of its age and metallicity from luminosity grid
 - Sum magnitude of all stars in subhalo

UV Background

- Each gas particle is twinned from a dark matter particle in the virial radius
- Mark all dark matter in a satellites at its point of maximum gas, then identify its gas twin, i.e. background gas
- The escape temperature for a satellite (what a particle needs to overcome the potential well)

$$T_{virial} = \frac{2G\mu m_p M_{halo}}{3kR_{halo}}$$

- If T_{virial} < T_{backgroud}, satellite never accumulates much gas
- Define uv loss as as the twinned gas that never entered the satellite

Ram Pressure and Tidal Stripping

• Tidal stripping

$$\frac{M_{satellite}(r)}{r^3} < \frac{2M_{host}}{R_{host}^3}$$

Ram pressure stripping

 $P_{ram} \sim \rho_{IGM} v_{halo}^2 > \frac{\sigma_{halo}^2 \rho_{gas}}{3}$

Future Work

- Too many lost gas particles in the "other" category: need to reexamine criterion
- Stellar feedback an surprisingly weaker than expected
- Look at the satellites in more galaxies within the MUGS suite