Photometric redshift statistics

or how to avoid biases in cosmological constraints

Carlos Cunha

University of Michigan

Great Lakes Cosmology Workshop
University of Chicago, June 16th, 2010
Basics of photo-z’s

• Probe strong spectral features (4000 Å break)

• Flux in each filter depends on galaxy’s type and redshift.
Two classes of methods:

- **Template-fitting**: compare observed fluxes with predicted fluxes from library of galaxy spectra.

- **Training set**: use subsample with known redshifts to “train” flux-redshift relation.
What **not** to do (but is often done)

- **Training set methods**: determine functional relation between photometric observables, \(m\), and \(z_{\text{phot}}\) using a training set

\[
z_{\text{phot}} = z_{\text{phot}}(m)
\]

- **Template-fitting methods**: choose the photo-z to be the peak of the likelihood (or posterior) distribution.
Each region of observable space (fluxes, colors) is occupied by galaxies at a broad range of redshifts.

Representing these broad redshift distributions by a single number (the peak, mean, …) is the main source of bias in photometric redshifts.
The origin of the photo-z bias

\[N(z) \]

\[z \]

\[O_i, O_k \]
The origin of the photo-z bias

All objects in this region of observable space are spread out in true redshift space, but are concentrated in a single point in photo-z space.
The origin of the photo-z bias

All objects in this region of observable space are spread out in true redshift space, but are concentrated in a single point in photo-z space.
The origin of the photo-z bias

All objects in this region of observable space are spread out in true redshift space, but are concentrated in a single point in photo-z space.
The origin of the photo-z bias

All objects in this region of observable space are spread out in true redshift space, but are concentrated in a single point in photo-z space.
What to do

Use full redshift distribution, $p(z)$, for every galaxy.

How do we get $p(z)$’s?

Nearest neighbors are a great tool to estimate $p(z)$’s and have many other useful applications.

The Team:
Me (Michigan), M. Lima (UPenn), H. Oyaizu (a Big Bank in Japan), H.Lin (Fermilab), J. Frieman (Chicago, Fermilab).
Weights

Match distributions of observables in training (spectroscopic or simulated) sample and photometric sample by assigning weights to training set galaxies.

\[\text{Weight} \propto \frac{\rho_{\text{photo}}}{\rho_{\text{train}}} \text{ where } \rho_i = \frac{N_i}{V} \]

\(N_i\): number of galaxies within ball of volume \(V\).

The radius of the ball is determined by the distance to 100\(^{th}\) nearest neighbor in the training set in space of observables (colors and magnitudes).

Assumption: Training set is locally representative of photometric set.

Is that true? Yes, if differences in selection are only in observable space.
• Training composed of sets of galaxies with different color and magnitude cuts.
• Very different distributions from the photometric sample (sample for which there are no spectroscopic redshifts).
The recoverable sample:

- Can only estimate photo-z’s (or the redshift distribution) in regions of observable space covered by the training set, i.e. the recoverable sample.
- The recoverable sample is a by-product of the weights calculation.
Weights applications II

Estimating bias and scatter:

- Photo-z properties as a function of z_{spec} (or other non-observables) **must** use the weights and **only apply** to the recoverable sample.
The weighted redshift distribution
The training does a decent job in estimating the probability for individual galaxies. Fainter galaxies have broader probability distributions.
The training does a decent job in estimating the probability for individual galaxies. Fainter galaxies generate broader probability distributions.

Representing p(z) by a single number generates photo-z biases!
Using $p(z)$ eliminates lensing calibration bias, b_z.

$$b_z + 1 = \frac{\Delta \Sigma}{\Delta \Sigma}$$

b_z: bias in differential surface density due to bias in Σ_c due to photo-z errors.

Mandelbaum et al (2008)
Conclusions

• Use \(p(z) \) not photo-z.
 - With smaller biases, degradations in constraints from uncertainties in photo-z errors are much smaller \(\Rightarrow \) weaker requirements on calibration sets.

• Weights work well but,

• Need to worry about selection in non-observables:
 - Spectroscopic failures
 - Large-scale structure fluctuations (for pencil-beam training sets).
 - Effects are amplified by photometry errors.

Public codes available at: http://kobayashi.physics.lsa.umich.edu/~ccunha/nearest/

\(p(z)'s \) for SDSS available at: http://www.sdss.org/DR7/products/value_added/index.html
Weighted scatter and bias estimates for real SDSS photo-z’s.

Cunha et al (2009)
Real SDSS

Cunha et al (2009)
Origin of the bias

All objects in this region of observable space are spread out in true redshift space, but are concentrated in a single point in photo-z space.