High-Energy Cosmogenic Neutrinos

Markus Ahlers

UW-Madison & WIPAC

HEM 2014

Chicago, June 9-11, 2014

WIPAC

Cosmogenic neutrinos

- cos-mo-gen-ic (adj.): "produced by cosmic rays"
- X but this is true for all high-energy neutrinos...
- more specifically: not in the source or atmosphere, but during CR propagation
- most plausibly via pion production in $p\gamma$ interactions, *e.g.*

$$p + \gamma_{\text{bgr}} \to \Delta \to n + \pi^+$$
$$\pi^+ \to \mu^+ \nu_\mu \quad \& \quad \mu^+ \to e^+ \bar{\nu}_\mu \nu_e \quad \& \quad n \to p e^- \bar{\nu}_e$$

Ultra-High Energy (UHE) Cosmic Rays (CRs)

Cosmogenic neutrinos

• Observation of UHE CRs and extragalactic radiation backgrounds "guarantee" a flux of high-energy neutrinos, in particular via resonant production in CMB.

[Berezinsky & Zatsepin'69]

- "Guaranteed", but with many model uncertainties and constraints:
 - (low cross-over) proton models + CMB (+ EBL)

[Berezinsky & Zatsepin'69; Yoshida & Teshima'93; Protheroe & Johnson'96; Engel, Seckel & Stanev'01; Fodor, Katz, Ringwald &Tu'03; Barger, Huber & Marfatia'06; Yuksel & Kistler'07; Takami, Murase, Nagataki & Sato'09, MA, Anchordoqui & Sarkar'09]

+ mixed compositions

[Hooper, Taylor & Sarkar'05; Ave, Busca, Olinto, Watson & Yamamoto'05; Allard, Ave, Busca, Malkan, Olinto, Parizot, Stecker & Yamamoto'06; Anchordoqui, Goldberg, Hooper, Sarkar & Taylor'07; Kotera, Allard & Olinto'10; Decerprit & Allard'11; MA & Halzen'12]

+ extragalactic γ-ray background limits

[Berezinsky & Smirnov'75; Mannheim, Protheroe & Rachen'01; Keshet, Waxman, & Loeb'03; Berezinsky, Gazizov, Kachelriess & Ostapchenko'10; MA, Anchordoqui, Gonzalez–Garcia, Halzen & Sarkar'10; MA & Salvado'11; Gelmini, Kalashev & Semikoz'12]

GZK neutrinos from CMB

- Greisen-Zatsepin-Kuzmin (GZK)
 interactions of ultra-high energy CRs
 with cosmic microwave background
 (CMB) [Greisen'66;Zatsepin/Kuzmin'66]
- "GZK"-neutrinos at EeV energies from pion decay [Berezinsky/Zatsepin'69]
- three neutrinos $(\nu_{\mu}/\bar{\nu}_{\mu}/\nu_{e})$ from π^{+} :

$$E_{
u_{\pi}} \simeq rac{1}{4} \langle x \rangle E_p \simeq rac{1}{20} E_p$$

• one neutrino from neutron decay:

$$E_{\bar{\nu}_e} \simeq rac{m_n - m_p}{m_n} E_p \simeq 10^{-3} E_p$$

[Engel, Stanev & Seckel'01]

Flavor Composition

- in general, initial flavor ratio (ν_e:ν_µ:ν_τ) depend on process and environment
- mixing between flavor and mass eigenstates

$$|
u_{lpha}
angle = \sum_{j} U^*_{lpha j} |
u_j
angle,$$

 flavor oscillations average out over cosmic distances

$$P_{
u_{lpha} o
u_{eta}} \simeq \sum_{i} \left| U_{lpha i} \, U_{eta i}
ight|^2$$

 remaining phase space thin black line crossing (1:1:1)

PeV cosmogenic neutrinos via optical-UV background: $E_{\nu} \simeq 8 \text{PeV} (\text{eV}/E_{\gamma})$

Cosmogenic neutrinos & gamma-rays

GZK interactions produce neutral and charged pions

 $p + \gamma_{\text{CMB}} \rightarrow n + \pi^+/p + \pi^0$

Bethe-Heitler (BH) pair production:

 $p + \gamma_{\rm CMB} \rightarrow p + e^+ + e^-$

- → BH is dominant energy loss process for UHE CR protons at $\sim 2 \times 10^9 \div 2 \times 10^{10}$ GeV.
 - EM components cascade in CMB/EBL and contribute to GeV-TeV γ -ray background

Gamma-ray cascades

- CMB interactions (solid lines)
 dominate in casade:
 - inverse Compton scattering (ICS) $e^{\pm} + \gamma_{\text{CMB}} \rightarrow e^{\pm} + \gamma$
 - pair production (PP) $\gamma + \gamma_{\text{CMB}} \rightarrow e^+ + e^-$
- PP in IR/optical background (red dashed line) determines the "edge" of the spectrum.
- this calculation: Franceschini *et al.* '08

Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution.

→ "cascade bound" for neutrinos [Berezinsky&Smirnov'75]

Gamma-ray cascades

- CMB interactions (solid lines) dominate in casade:
 - inverse Compton scattering (ICS) $e^{\pm} + \gamma_{\text{CMB}} \rightarrow e^{\pm} + \gamma$
 - pair production (PP) $\gamma + \gamma_{\rm CMB} \rightarrow e^+ + e^-$
- PP in IR/optical background (red dashed line) determines the "edge" of the spectrum.
- this calculation: Franceschini *et al.* '08

Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution.

→ "cascade bound" for neutrinos [Berezinsky&Smirnov'75]

High-Energy Cosmogenic Neutrinos

[MA, Anchordoqui, Gonzalez-Garcia, Halzen & Sarkar '11]

- neutrino flux depend on source evolution model (strongest for "FR-II") and EBL model (highest for "Stecker" model)
- Stecker model disfavored by Fermi observations of GRBs
- strong evolution disfavored by Fermi diffuse background

UHE CR composition

- composition measurement on a statistical basis
- first two moments: $\langle X_{\max} \rangle$ & RMS (X_{\max})
- average mass inferred, *e.g.* from $\langle X_{\max} \rangle$:

$$\langle \ln A \rangle = \frac{\langle X_{\max} \rangle_p - \langle X_{\max} \rangle_{data}}{\langle X_{\max} \rangle_p - \langle X_{\max} \rangle_{Fe}} \ln 56$$

UHE CR composition

[Mass Composition Working Group Report '13; arXiv:1306.4430]

Markus Ahlers (UW-Madison)

High-Energy Cosmogenic Neutrinos

UHE CR composition

[Mass Composition Working Group Report '13; arXiv:1306.4430]

- inferred mass depend on hadronic interactions models
- large systematic uncertainties!
- "Auger results are consistent within systematic uncertainties with TA and Yakutsk, but not fully consistent with HiRes." [arXiv:1306.4430]

Composition dependence of UHE CR sources

- UHE CR emission toy-model:
 - 100% proton: $n = 5 \& z_{max} = 2 \& \gamma = 2.3 \& E_{max} = 10^{20.5} eV$
 - 100% iron: n = 0 & $z_{max} = 2$ & $\gamma = 2.3$ & $E_{max} = 26 \times 10^{20.5}$ eV
- Diffuse spectra of cosmogenic γ-rays (dashed lines) and neutrinos (dotted lines) vastly different. [MA&Salvado'11]

Approximate* scaling law of energy densities

* disclaimer:

- source composition Q_i with mass number A_i and index γ_i
- applies only to models with large rigidity cutoff $E_{\max,i} \gg A_i \times E_{GZK}$ previous examples ($z_{\max} = 2 \& \gamma = 2.3$):
- 100% proton: n = 5 & $E_{\text{max}} = 10^{20.5}$ eV $\omega_{\gamma} \propto 1 \times 12$
- 100% iron: n = 0 & $E_{\text{max}} = 26 \times 10^{20.5}$ eV $\omega_{\gamma} \propto 0.27 \times 0.5$
- **v** relative difference: ~ 82 .

Cosmogenic neutrinos from heavy nuclei

TABLE II: Expected numbers of events N_V from several UHE neutrino models, comparing published values from the 2008 ANITA-II flight with predicted events for a three-year exposure for ARA-37.

Model & references N _v :	ANITA-II,	ARA,
	(2008 flight)	3 years
Baseline cosmogenic models:		
Protheroe & Johnson 1996 [27]	0.6	59
Engel, Seckel, Stanev 2001 [28]	0.33	47
Kotera, Allard, & Olinto 2010 [29]	0.5	59
Strong source evolution models:		
Engel, Seckel, Stanev 2001 [28]	1.0	148
Kalashev et al. 2002 [30]	5.8	146
Barger, Huber, & Marfatia 2006 [32]	3.5	154
Yuksel & Kistler 2007 [33]	1.7	221
Mixed-Iron-Composition:		
Ave et al. 2005 [34]	0.01	6.6
Stanev 2008 [35]	0.0002	1.5
Kotera, Allard, & Olinto 2010 [29] upper	0.08	11.3
Kotera, Allard, & Olinto 2010 [29] lower	0.005	4.1
Models constrained by Fermi cascade bound:		
Ahlers et al. 2010 [36]	0.09	20.7
Waxman-Bahcall (WB) fluxes:		
WB 1999, evolved sources [37]	1.5	76
WB 1999, standard [37]	0.5	27

[ARA'11]

Range of GZK neutrino predictions of various evolution models and source compositions range over **two orders of magnitude**!

Nucleon cascade

- Observed composition is result of source composition and nucleon cascades.
- Backtracking conserves energy per nucleon.
- Bethe-Heitler (BH) loss breaks this approximation

 $b_{A,\mathrm{BH}}(E)\simeq Z^2 imes b_{p,\mathrm{BH}}(E/A)$

- Minimal cosmogenic neutrino production from fit to Auger data assuming:
 - maximal backtracking
 - minimal BH loss
 - → minimal nucleon emissivity

Nucleon cascade

- Observed composition is result of source composition and nucleon cascades.
- Backtracking conserves energy per nucleon.
- Bethe-Heitler (BH) loss breaks this approximation

 $b_{A,\mathrm{BH}}(E)\simeq Z^2 imes b_{p,\mathrm{BH}}(E/A)$

- Minimal cosmogenic neutrino production from fit to Auger data assuming:
 - maximal backtracking
 - minimal BH loss
 - → minimal nucleon emissivity

Guaranteed cosmogenic neutrinos

→ nucleon spectrum for observed mass number A_{obs}:

 $J_N^{\min}(E_N) = A_{\rm obs}^2 J_{\rm CR}(A_{\rm obs}E_N)$

- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models with ARA-37
- → generalization to arbitrary composition via

$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\mathrm{CR}}(A_i E_N)$$

Guaranteed cosmogenic neutrinos

→ nucleon spectrum for observed mass number A_{obs}:

 $J_N^{\min}(E_N) = A_{\rm obs}^2 J_{\rm CR}(A_{\rm obs}E_N)$

- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models with ARA-37
- → generalization to arbitrary composition via

$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\rm CR}(A_i E_N)$$

Guaranteed cosmogenic neutrinos

→ nucleon spectrum for observed mass number A_{obs}:

 $J_N^{\min}(E_N) = A_{\rm obs}^2 J_{\rm CR}(A_{\rm obs}E_N)$

- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models with ARA-37
- → generalization to arbitrary composition via

$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\mathrm{CR}}(A_i E_N)$$

Summary

- Cosmogenic neutrinos guarantee a diffuse flux of UHE neutrinos.
- Present neutrino limits start to constrain optimistic (proton-dominated) model.
- A cosmogenic origin of the IceCube "excess" at TeV-PeV energies is **very unlikely**.
- **Model uncertainties** of predictions are large (UHE CR source composition and evolution).
- Future EeV neutrino observatories (ARA or ARIANNA) will be able to **probe** proton-dominated CR models.

Backup

Diffuse CR fluxes

- · spatially homogeneous and isotropic distribution of sources
- Boltzmann equation of comoving number density $(Y = n/(1 + z)^3)$:

$$\dot{Y}_i = \partial_E(HEY_i) + \partial_E(b_iY_i) - \Gamma_i Y_i + \sum_j \int \mathrm{d}E_j \, \gamma_{ji}Y_j + \mathcal{L}_i \, ,$$

- *H* : Hubble rate b_i : continuous energy loss γ_{ji} (Γ_i) : differential (total) interaction rate
- power-law proton emission rate:

$$\mathcal{L}_p(0,E) \propto (E/E_0)^{-\gamma} \exp(-E/E_{\max}) \exp(-E_{\min}/E)$$

• redshift evolution of source emission or distribution:

$$\mathcal{L}_p(z, E) = \mathcal{L}_p(0, E)(1+z)^n \Theta(z_{\max} - z)\Theta(z - z_{\min})$$

Proton-dominance in UHE CRs?

- GoF based on Hires-I/II data $(\Delta E/E \simeq 25\%)$
- fixed: $E_{\text{max}} = 10^{21} \text{ eV}$ $z_{\text{min}} = 0 / z_{\text{max}} = 2$
- priors: $2.1 \le \gamma \le 2.9$ $2 \le n \le 6$ $\omega_{\text{cas}} \le \omega_{\text{Fermi}}$
- range of spectra: 99% C.L.
- increasing crossover energy from 2nd knee to ankle

Propagation of CR nuclei

 fast photo-disintegration of nuclei (mass number
 A = N + Z) beyond the giant dipole resonance (GDR):

$$\lambda_{
m GDR} \sim rac{4}{A} \;
m Mpc$$

- strong influence of mass composition at very high energy
- → BUT: conserves total number of nucleons with nucleon energy E/A!
- Neutrino production (mostly) via γ-nucleon interaction!

