

Contribution of blazars and other source classes to the Extragalactic Gamma-ray Background

Marco Ajello¹,
Roger Romani², Dario Gasparrini³
on behalf of the Fermi-LAT
collaboration

¹Clemson, ²Stanford, ³ASI Data Center

Based on:

Fermi-LAT Collab. in prep. Ajello et al., 2014, ApJ, 780, 73 Ajello et al., 2012, ApJ, 751, 108

EGB: Why is it important?

Undetected sources

Blazars

Dominant class of LAT extragalactic sources. Many estimates in literature. EGB contribution ranging from 20% - 100%.

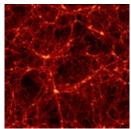
Non-blazar active galaxies

27 sources resolved in 2FGL ~ 25% contribution of radio galaxies to EGB expected. (e.g. lnoue 2011)

Star-forming galaxies

Several galaxies outside the local group resolved by LAT. Significant contribution to EGB expected. (e.g. Pavlidou & Fields, 2002, Ackermann et al. 2012)

GRBs High-latitude pulsars


Small contributions expected. (e.g. Dermer 2007, Siegal-Gaskins et al. 2010)

Diffuse processes

Intergalactic shocks

Widely varying predictions of EGB contribution ranging from 1% to 100% (e.g. Loeb & Waxman 2000, Gabici & Blasi 2003)

Dark matter annihilation

Potential signal dependent on nature of DM, cross-section and structure of DM distribution (e.g. Ullio et al. 2002)

Interactions of UHE cosmic rays with the EBL

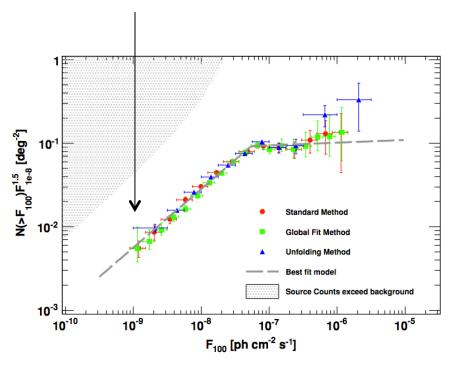
Dependent on evolution of CR sources, predictions varying from 1% to 100 % (e.g. Kalashev et al. 2009)

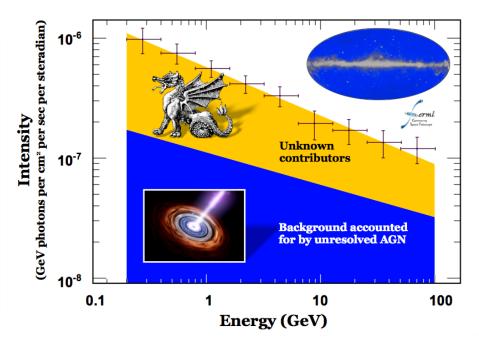
Extremely large Galactic electron halo (Keshet et al. 2004)

CR interaction in small solar system bodys (Moskalenko & Porter 2009)

Source Contribution to EGB

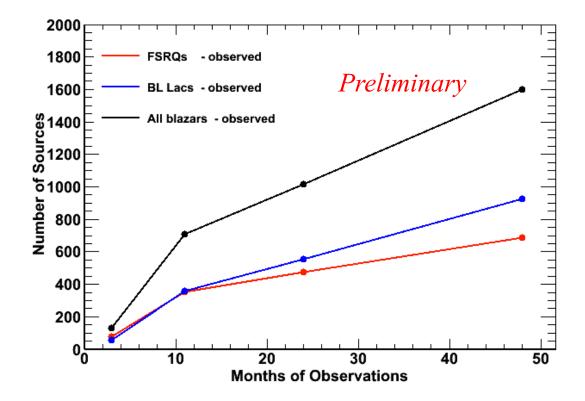
- The Big Question:
 - Which class of source contributes how much to the EGB ?
 - Can unresolved sources explain the bulk of the EGB ?
- Many models in the literature:
- > **Blazars**: Stecker+93, Padovani+93, Salomon&Stecker94, Chiang&Mukherjee+98, Mukherjee&Chiang99, Muecke&Pohl00, Narumoto&Totani06, Giommi+06, Dermer07, Pavlidou&Venters08, Kneiske&Mannheim08, Bhattacharya et al. 2009, Inoue&Totani 09, Abod et al. 2010, Stecker & Venters 2010, Abazajan+10, Singal+10, Harding & Abazajan 2012, Di Mauro+14, Singal+14
- > Star forming galaxies: Pavlidou & Fields 2002, Thompson+07, Bhattacharya&Sreekumar09, Makiya+11, Fields+10, Stecker&Venters+11, Lacki+14
- > Radio galaxies: Stawarz+06, Inoue+08, Inoue11, Massaro&Ajello11, DiMauro+13
- > Milli-second pulsars/GRBs: Fauchere-Giguere & Loeb10, Siegal-Gaskins+10/ Dermer07




IGRB as of 2010

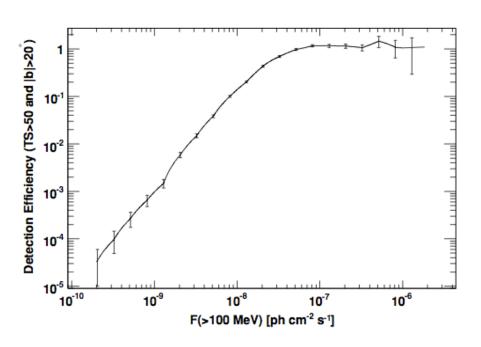
• Unresolved blazars make a small fraction (≤30%) of the IGRB (Abdo et al. 2010, ApJ, 720, 435)

Unresolved (with F>1e-9 ph cm⁻² s⁻¹) sources make \sim 16 %



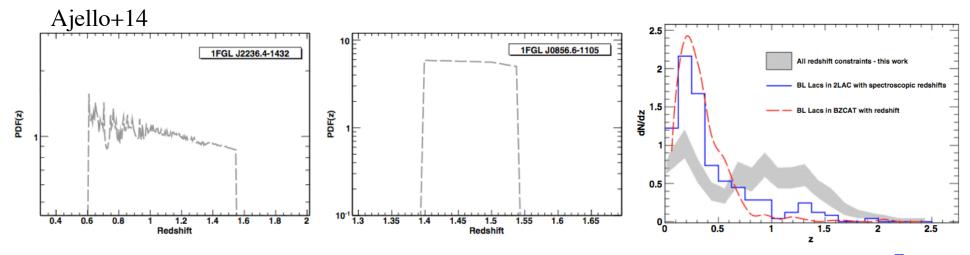
Blazars

- Blazars are (by far) the largest population of sources detected by Fermi
 - Represent 85%-90%
 - Numbers steadily increasing (BSL, 1LAC, 2LAC, 3LAC)
 - BL Lacs have taken over the FSRQs



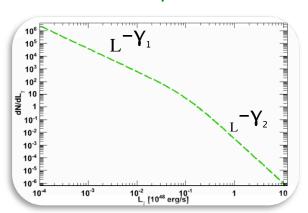
Blazars

- Goal: Revise Blazar contribution to the EGB
 - Model the population as a whole (relying on larger statistics)
 - Adopt improved SED modeling
- Start from the sample of Abdo et al. 2010, ApJ 720, 435
 - 410 blazars
 - 211 BL Lacs / 199 FSRQs
 - 10% incompleteness



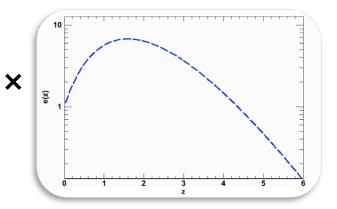
Redshift for BL Lacs

- Sample of ~211 BL Lacs with full redshift information:
 - − ~100 with spectroscopic redshifts
 - − ~100 with redshift contraints
 - Spectroscopic lower limits due absorption lines caused by intervening systems (Shaw+13)
 - Photometric upper limits due to lack of neutral hydrogen absorption (Rau+12)
 - Spectroscopic upper limits (z \leq 2) due to absence of Lyman- α absorption (Shaw+13)
 - Host galaxy fitting lower limits (Shaw+13)


Modeling the Luminosity Function

Luminosity Function

$$\Phi(L_{\gamma},z) = \Phi(L_{\gamma}/e(z),z=0)$$


Local Luminosity Function

$$\Phi(L_{\gamma}, z = 0) \propto \left[\left(\frac{L_{\gamma}}{L_{*}} \right)^{\gamma_{1}} + \left(\frac{L_{\gamma}}{L_{*}} \right)^{\gamma_{2}} \right]$$

Typical double power law

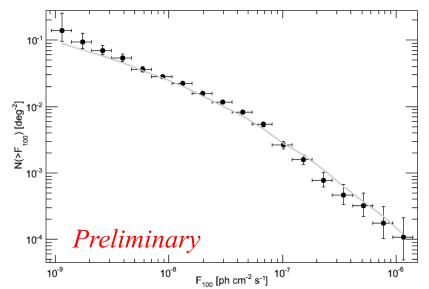
Evolutionary Factor

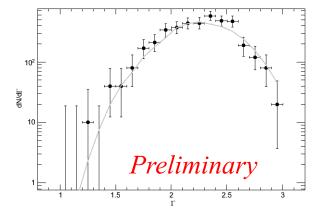
$$e(z) = (1+z)^k e^{z/\gamma}$$

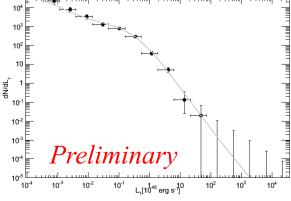
Evolution in luminosity as a power-law with index k and a cut-off after z_{cut} =-1- $k\gamma$

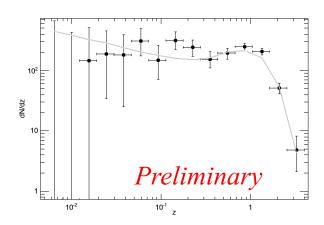
$$k = k_d + \tau (\log L - 46)$$

Accounts for the different speeds of evolution

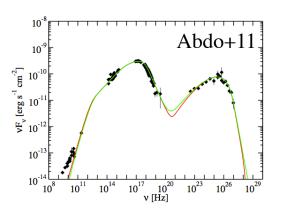

kd	~10
Т	~2.9
Υ	-0.1



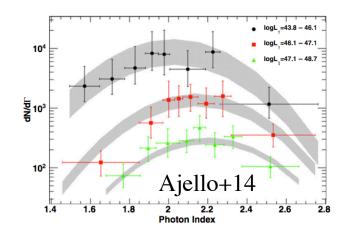

Method & Results

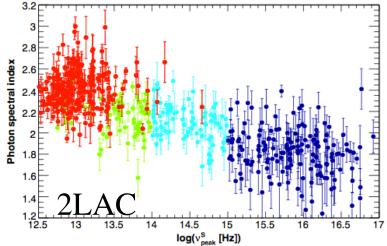


- Bootstrap method as in Ajello+14
 - Relies on 500 MC samples
 - Takes into account the error on redshift
 - Robust error estimate in general
- DE model does a reasonable job in describing the available dataset
 - LDDE does a good job as well
 - Contribution to EGB <u>robust against</u> <u>changes of LF</u> parameterization (as long as LFs reproduce all data)



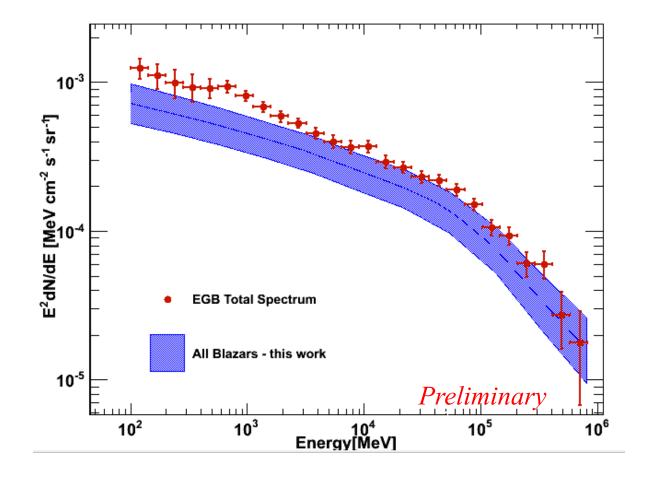
SED Modeling



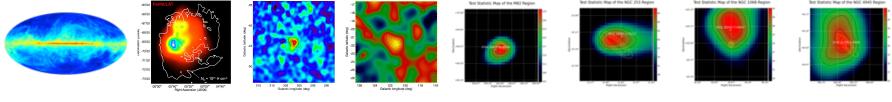

• We adopt a double power law absorbed by the EBL:

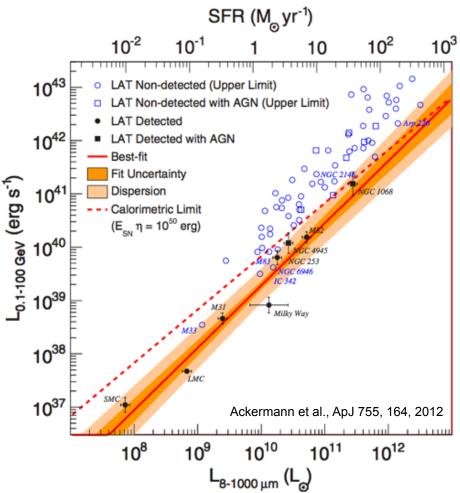
$$\frac{dN}{dE} = \frac{A}{\left(\frac{E}{E_b}\right)^a + \left(\frac{E}{E_b}\right)^b} * e^{-\tau(E,z)}$$

- with $a\approx 1.7$ and $b\approx 2.6-3.0$
- E_b is a function of measured photon index Γ , calibrated via simulations
- since $\Gamma = \Gamma(L)$, spectra naturally get softer for increasing luminosity (a la 'blazar sequence' of Ghisellini+09, adopted by Inoue et al. 2009, and Abazajian+10)

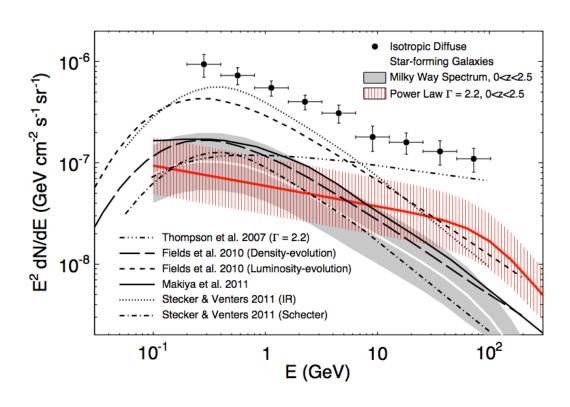


Results


- EGB total intensity of 1.1×10⁻⁵ ph cm⁻² s⁻¹ sr⁻¹
- Blazars contribute a grand-total of (5-7)×10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹
 - Resolved sources : $\sim 4 \times 10^{-6}$ ph cm⁻² s⁻¹ sr⁻¹
 - Unresolved blazars: \sim (2-3)×10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹ (in agreement with Abdo+10)

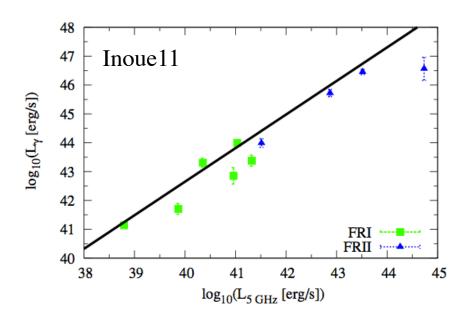


Star forming galaxies



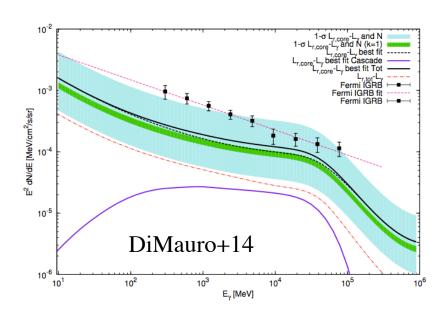
- > 8 galaxies detected by the LAT
- Almost linear correlation between gamma-ray luminosity and tracers of star formation
 - bolometric infrared luminosity
 - 1.4 GHz radio continuum emission
- Detection + upper limits can be used to constrain correlation
- Use gamma-ray / IR luminosity correlation to calculate EGB contribution based on IR luminosity function of galaxies.

Star-forming Galaxies

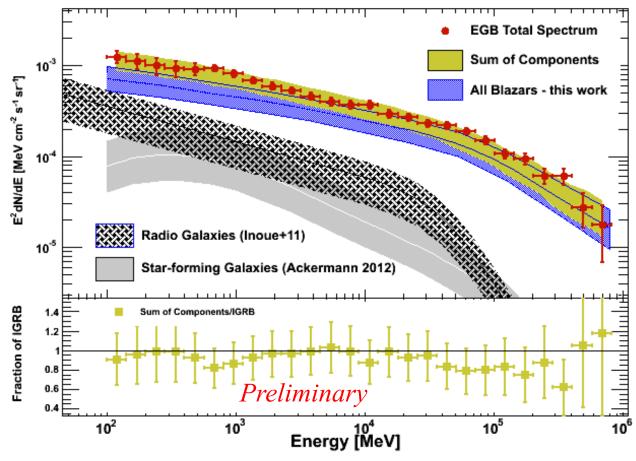


- Unresolved star-forming galaxies produce 0.2-2.4 ×10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹
 - E.g. 4% 24% of the total EGB

Radio Galaxies

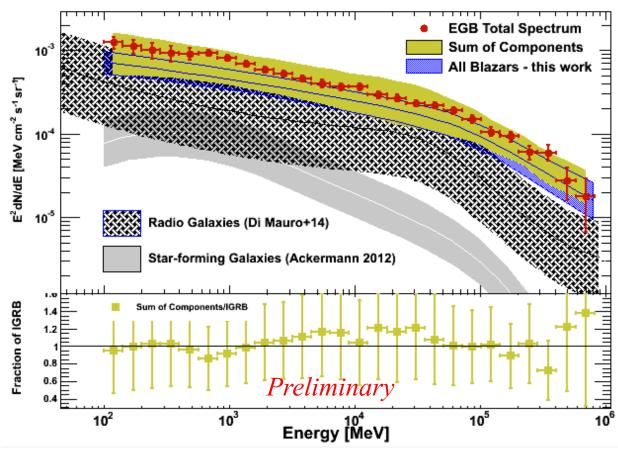

- Fermi has detected 15 radio galaxies (Abdo+10, ApJ 720, 912 and Nolan+12, ApJS, 199, 31)
- A correlation between the g-ray and the radio (core) luminosity has been found
- Using a radio luminosity function (e.g. Willott+01) the contribution to the EGB can be estimated: 20-100% of the EGB

Radio Galaxies


- Fermi has detected 15 radio galaxies (Abdo+10, ApJ 720, 912 and Nolan+12, ApJS, 199, 31)
- A correlation between the g-ray and the radio (core) luminosity has been found
- Using a radio luminosity function (e.g. Willott+01) the contribution to the EGB can be estimated: 20-100% of the EGB

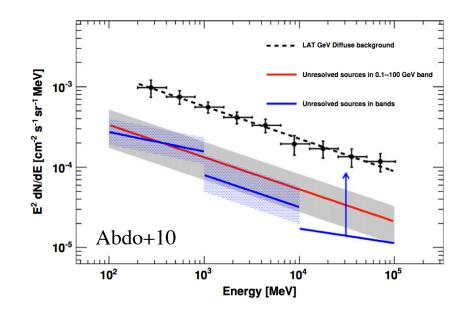
Sum of Components

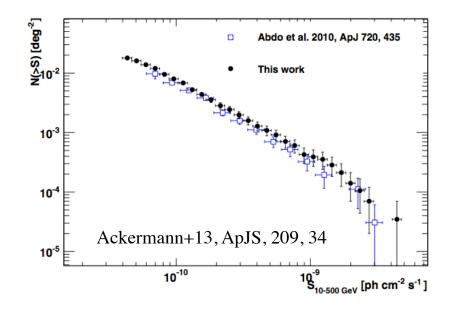
• Blazars, star-forming galaxies and radio galaxies can explain the intensity and the spectrum of the EGB


As usual: it does not include the systematic uncertainty on the EGB

Sum of Components

• Blazars, star-forming galaxies and radio galaxies can explain the intensity and the spectrum of the EGB


As usual: it does not include the systematic uncertainty on the EGB



Some thoughts on blazars

- Resolved flux (>100 MeV) in Fermi Catalogs (at |b| > 15 deg):
 - $-1FGL \rightarrow 4.2 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
 - 2FGL -> 4.4 ×10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹
 - 3FGL -> 4.8 ×10⁻⁶ ph cm⁻² s⁻¹ sr⁻¹
- Fermi is not going to reduce the EGB much further
 - Except at >10 GeV where the LogN-LogS is steep and sensitivity increases faster than T^{-0.5}

Conclusions

• The Fermi (new) total EGB can be explained as a sum of :

- Blazars : 45-65%

Star forming galaxies: 4-24%

− Radio galaxies: ~20%

- Blazars are the largest contributors, and *Fermi* has resolved a substantial fraction of their emission
- Reducing the uncertainty in the radio galaxies estimate and star forming galaxies might be the next important task
- Outlook for blazars:
 - Improved response will favor detection of soft sources and hard sources
 - Expect a 4yr logN-logS which will rely on ~1600 sources
 - Expect as well new luminosity functions (depending on redshift coverage)

Thank You!