The Complementarity of Neutrinos and Cosmic Rays for UHE Astrophysics

Amy Connolly (Ohio State and CCAPP), with Shunsaku Horiuchi (UC Irvine) and Nathan Griffith (Ohio State)

High-Energy Messengers: Connecting the Non-Thermal Extragalactic Backgrounds University of Chicago/KICP June 11th, 2014

Outline

- Motivation for this multi-messenger study
- New cosmic ray fits (work in progress)
 Implications for neutrino fluxes
- Implications of neutrino flux constraints on UHE source properties
- What we can expect in the future

Motivation

Protons and neutrinos are complementary probes of UHE sources

Using CRPropa program, generated protons from sources with flat spectrum, flat redshift dependence to 4 Gpc, propagate through GZK interactions

Protons and neutrinos are complementary probes of UHE sources

Protons and neutrinos are complementary probes of UHE sources

Purpose

- We set out to answer the questions:
 - How do current v, CR results constrain the properties of the UHE sources?
 - What can we learn about UHE astrophysics with 100 UHE v's?

New fits to source spectra from CR data

- In the process, performed new fits of UHE source spectra to CR data:
 - Use measured redshift evolutions
 - De-weight highest energy CR's (local)
 - Use CR systematic energy shift as nuisance parameter $E \begin{bmatrix} eV \end{bmatrix}_{10^{19}} = 10^{20}$

Use latest data reported by Auger at ICRC2013 in Rio

Procedure

Model parameters

- Source redshift evolution: ρ(z)
 - Many take $\rho \propto (1+z)^m$, $\mathbf{z}_{min} < z < \mathbf{z}_{max}$
 - We take measured evolutions, consider systematics:
 - Star formation rate (SFR)
 - Gamma ray bursts (GRB)
 - Active Galactic Nuclei (such FR-II)
- Injected spectrum at the source: $L \propto L_0(E_i/E_0)^{-\alpha}$ up to E_{max}
- Ankle vs. Dip:
 - Ankle: Extragalactic (EG) $\ge E_{min}=10^{18.8} \text{ eV}$
 - Dip: EG \ge E_{min}=10^{17-17.5} eV (we take E_{min}=10^{17.6} eV)
- Protons only, 8 distinct models (4 evolutions, ankle&dip)

Source redshift evolutions

Gamma Ray Bursts 10^{-6} 10^{-6} 10^{-7} 10^{-8} 10

Use function form from H. Yuksel *et al.* (2008) fitted to latest SFR data

Test against Cole *et al.* (2001) functional form fitted to SFR data (upper) Use function form from T. Le & C. Dermer (2007) SFR5

Test against T. Le & C. Dermer (2007) SFR6

Use Wall *et al.* (2005) mid Fig. 10

Test against Wall *et al.* (2005) upper Fig. 10

De-weighting "local" CRs

- Highest energy cosmic rays are "local" and may not be representative of the "cosmic" spectra
 - Source properties could evolve, local universe could be a fluctuation
- Perform weighted likelihood to fit models to CR data
- For each model, assign weight to an energy bin *i*:
 - w_i = <u># cosmic rays arriving in an energy bin *i* from beyond = 100 Mpc # cosmic rays injected at any distance with any initial energy</u>

CR energy scale systematic as "nuisance parameter"

- Latest Auger results (Rio `13) report 14% uncertainty on energy scale
 - Treat this a nuisance parameter in our fits
- Consistently find data prefers to be shifted ~0.8*14%=11% higher

Fit results A. Connolly (OSU), S. Horiuchi (UC Irvine), N. Griffith (OSU), in preparation

With the UHE "local" CR's de-weighted, the best-fit cosmic spectrum naturally overshoots at the highest energies \rightarrow higher neutrino flux expectations

Constraining the UHE sources using limits on GZK-induced neutrino fluxes

GZK models - current constraints

- IceCube: Best constraints $E_v \approx 10^{19} \text{ eV}$
 - Cutting into most optimistic datainspired models
 - Radio *in situ* arrays will overtake IceCube for E_v>10^{17.5-18} eV
- ANITA: Best constraints for $E_v \gtrsim 10^{19} \text{ eV}$
 - EVA: higher gain, lower threshold

Which type of models has IceCube excluded?

- Excluded models have strong source evolutions
- Example:
 - FR-II (AGN) redshift evolution α =2.3, dip, E_{max}=10^{20.5} eV Kotera *et al.* (2010)

E (eV)

in situ arrays will constrain the redshift EVOlution From A. Connolly, S. Horiuchi & N. Griffith, in preparation.

Balloons: be careful when comparing sensitivity to cosmogenic v fluxes

E_{max} is unknown!

E (eV)

Which type of models has ANITA excluded?

- Balloons ideal for probing the highest energy features of spectrum
- Dotted line:
 - FR-II (AGN) redshift evolution,
 but with higher E_{max}
 @ 10²² eV, stiffening of α to 1.5

Which type of models has ANITA excluded?

- Balloons can constrain E_{max}
- ANITA excluded:
 - FR-II (AGN) redshift evolution, E_{max} >10²² eV

ANITA 3 will do more

A. Connolly (OSU), S. Horiuchi (UC Irvine), N. Griffith (OSU), in preparation

- If $E_{max} = 10^{21.5} \text{ eV}$, ANITA 3 expected to exclude $E_{max} < 10^{20.5} \text{ eV}$ for FR II assumption
- EVA will be powerful in this variable predictions soon

What we can expect in the future

Future

Summary

- Neutrinos and cosmic rays are complementary messengers to the UHE universe
- Performed new fits of source spectra parameters to latest Auger `13 data
- Current UHE limits constraining models with strong redshift evolutions
- Balloons have a unique sensitivity to E_{max}
- *in situ* arrays will constrain evolution of sources
- Proposed experiments can even reach "minimal" models where CR's are heavy