

MultiDark Multimessenger Approach for Dark Matter Detection

The Measurement of the Expansion Rate of the Universe from γ-ray Attenuation*

Alberto Domínguez (University of California, Riverside)

Collaborators: Justin Finke, Francisco Prada, Joel Primack, Brian Siana

* partly on behalf of the Fermi collaboration (Domínguez et al. 2013, ApJ, 770, 77)

High-Energy Messengers @ Chicago, Illinois June 9-11, 2014

Cosmic Diffuse Extragalactic Backgrounds

Local EBL: Data and Models

EBL models

Type of modeling and refs.	Galaxy number evolution	Galaxy emission		
Type i, Forward evolution (Somerville+ 12; Gilmore+ 12; Inoue+ 13)	Semi-analytical models.	Modeled . Stars: Bruzual & Charlot 03 (BC03); Dust Absorption: Charlot & Fall, 00; Dust Re-emission: Rieke+ 09.		
Type ii, Backward evolution (Franceschini+ 08)	Observed local-optical galaxy luminosity functions (starburst population) and near-IR galaxy luminosity functions up to z=1.4 (elliptical and spiral populations)	Modeled . Consider only a few galaxy types based on optical images.		
Type iii, Inferred evolution (Finke+ 10; Kneiske & Dole 10)	Parameterization of the history of the star formation density of the universe. By construction, they do not include quiescent and AGN galaxies.	Modeled. Stars: Single bursts of solar metallicity from BC99 (Kneiske+)/BC03 (Finke+); Dust Absorption: General extinction law; Dust Re-emission: Modified black bodies.		
Type iv, Observed evolution (Domínguez+ 11; Stecker+ 12; Helgason+ 12)	Observed near-IR galaxy luminosity functions up to z=4.	Observed . Multiwavelength photometry from the UV up to MIPS 24 for ~6000 galaxies up to z=1. Consider 25 different galaxy types.		

Local EBL: Data and Models

Gamma-Ray Attenuation

Gamma-Ray Attenuation

Local EBL: Data, Models, and gamma-ray measurements

Local EBL: Data, Models, and gamma-ray measurements

The Cosmic γ-ray Horizon

$$\left. \frac{dN}{dE} \right|_{obs} = \left. \frac{dN}{dE} \right|_{int} \exp\left[-\tau(E,z) \right]$$

The cosmic gamma-ray horizon (CGRH) is by definition the energy E0 as a function of redshift at which the optical depth due to EBL is unity.

The measurement of the CGRH is a primary scientific goal of the Fermi Gamma-Ray Telescope (Hartmann 07; Stecker 07; Kashlinsky & Band 07)

The Cosmic γ-ray Horizon

Albert+ 08

Abdo+ 10

Gilmore+ 12

Sample and Synchrotron Self-Compton Models

Blazars: AGNs emitting at all wavelength with energetic jets pointing towards us.

Emission described by homogeneous synchrotron/synchrotron-self Compton model.

Quasi-simultaneous multiwavelength catalog of 15 BL Lacs (based on the compilation by Zhang et al. 2012).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ynchrotron/synchrotron-self Compton model.	8340		
$\begin{array}{c} & \nu \ \text{Hz}] \\ 10^{10} \ 10^{12} \ 10^{14} \ 10^{16} \ 10^{18} \ 10^{20} \ 10^{22} \end{array} \\ \hline \text{WHE region} \\ \textbf{30 GeV < E < 30 TeV} \end{array} \\ \hline \text{Mkn 421 } 0.031 \\ \text{Mkn 501 } 0.034 \\ \text{1ES } 2344 + 514 & 0.044 \\ \text{1ES } 1959 + 650 & 0.048 \\ \text{PKS } 2005 - 489 & 0.071 \\ \text{W Comae} & 0.102 \\ \text{PKS } 2155 - 304 & 0.116 \\ \text{H } 1426 + 428 & 0.129 \\ \text{1ES } 0806 + 524 & 0.138 \\ \text{H } 2356 - 309 & 0.165 \\ \text{1ES } 1218 + 304 & 0.182 \\ \text{1ES } 1011 - 232 & 0.186 \\ \text{1ES } 1011 + 496 & 0.212 \\ 3C \ 66A & 0.444 \\ \text{PG } 1553 + 113 & 0.500^{+0.080}_{-0.105} \\ \text{Furmiss et al. (2013)} \end{array} \\ \hline \begin{array}{c} \sim \textbf{0.372} \\ \text{Furmiss et al. (2013)} \end{array} \\ \hline \end{array}$		Source	Redshift	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mkn 421 Mkn 501 1ES 2344+514 1ES 1959+650 PKS 2005-489 W Comae PKS 2155-304 H 1426+428 1ES 0806+524 H 2356-309 1ES 1218+304 1ES 1101-232 1ES 1011+496 3C 66A PG 1553+113	$\begin{array}{c} 0.031\\ 0.034\\ 0.044\\ 0.048\\ 0.071\\ 0.102\\ 0.116\\ 0.129\\ 0.138\\ 0.165\\ 0.182\\ 0.182\\ 0.186\\ 0.212\\ 0.444\\ 0.500^{+0.080}_{-0.105}\end{array}$	~ 0.372 Furniss et
Energy [eV]	10^{-4} 10^{-3} 10^{-1} 10^{1} 10^{3} 10^{5} 10^{7} 10^{9} 10^{11} 10^{13}			al. (2013)
	Energy [eV]			

SED Multiwavelength Fits

A one-zone synchrotron/SSC model is fit to the multiwavelength data excluding the Cherenkov data, which are EBL attenuated. Then, this fit is extrapolated to the VHE regime representing the intrinsic VHE spectrum. Technique similar to Mankuzhiyil et al. 2010.

Optical Depth Estimation and Determination of the CGRH

Maximum likelihood technique with three EBL-model independent conditions:

- 1.- The optical depth is lower than 1 at E = 0.03 TeV.
- 2.- The optical depth is lower than the optical depth calculated from
- the EBL upper limits from Mazin & Raue, 07; especially $1 < \tau < UL(z)$ at E = 30 TeV.
- 3.- The polynomial is monotonically increasing with the energy.

The Cosmic γ-ray Horizon: Results

The Cosmic γ-ray Horizon: Results

The Cosmic γ-ray Horizon: Results

Cosmic y-ray Horizon: Cosmological Dependence

Cosmological Dependence: Assumed flat ACDM

Cosmological Dependence: Assumed flat ACDM

Cosmological Dependence: Assumed flat ACDM

The Hubble Constant from Different Methodologies

Cosmological Parameters: Ω_m and ω_0

Summary

1.- The first statistically significant detection of the CGRH that is independent of any EBL model has been presented.

2. This detection is compatible with the recent EBL direct detection in the optical, galaxy counts, and upper limits from gamma-ray attenuation.
This constrains the contribution to the low redshift EBL from faint or high redshift galaxies that escape to current galaxy surveys and any other potential contribution.

3.- The detection of the CGRH allow us to derive the expansion rate of the Universe (the Hubble constant) from a novel technique using γ-ray attenuation, whose value is compatible with other rather mature techniques.

 $H_0 = 71.8^{+4.6}_{-5.6}^{+7.2}$ km/s/Mpc

4.- The cosmological parameters Ω_m and w cannot be constrained with current data.