

Cosmic Rays and the Star-Forming Contribution to the GeV Background

Vasiliki Pavlidou

Tijana Prodanovic

Amy Lien 連雅琳

Nachiketa Chakraborty

Brian Fields University of Illinois

High Energy Messengers June 9, 2014

Tuesday, June 10, 2014

Gamma Rays from Star-Forming Galaxies Predictions for Normal Galaxies

Pavlidou & BDF 2001

Hadronic (Pionic) Luminosity:

dominated by proton-ISM interactions: $pp \to \pi^0 \to \gamma\gamma$

★ projectiles

 γ -rays per H atom ~ CR flux ~ SN rate × τ_{escape} ~ star-form rate

★ targets

total # H atoms $\propto M_{\rm gas,tot}$

+ luminosity

 $\gamma \text{ emission } \propto \text{ star-form rate } \times M_{\text{gas,tot}}$

Resolved Galaxies

- LMC and SMC resolved by Fermi
- First gamma maps of external galaxies
- **Expectations**
 - hotspots at star-forming regions
 - surface brightness
 - $I_{\gamma} \sim {\rm flux} \times {\rm targets} \sim N_{\rm H,total} \Phi_{\rm cr}$ gammas should trace total gas column
- **Reality** Abdo+ 2010
- ✓ global, integrated flux agrees with CR+ISM model
- \checkmark 30 Doradus bright! star formation makes gamma ray
- **x** diffuse emission traces ionized H, not total!?
- What's going on?
 - cosmic rays diffuse less from sources?
 - invisible (undetected) gas reservoirs?
 - cosmic-ray time dependence important? Foreman+ 2014

LMC Map. color: Fermi contours: neutral H

How Do Star-Forming Galaxies Make Gamma Rays?

BDF, Pavlidou & Prodanovic 2010; Lacki talk

Expectations Pre-Fermi: Guaranteed Gamma-Ray Background

Guaranteed extragalactic backgrounds faint, unresolved counterparts to confirmed sources

active galaxies Stecker & Salamon, Mukherjeee & Chaing, Pol

Star-Forming Galaxies Pavlidou & BDF 2011

Diffuse Gamma-Ray Background Unresolved Normal Galaxies?

working hypothesis: supernovae are engines of cosmic-ray acceleration

star formation → SN → cosmic rays

gamma signal:

 $I \sim \int_{\text{los}} (\text{cosmic star form}) \times (\text{ISM targets})$

shape: Galactic/pionic feature redshifted

Amplitude: substantial part of preliminary Fermi signal

observationally calibrated

Fermi MW emissivity, Schmidt-Kennicutt

breaks cosmic SF luminosity-density degeneracy

Normal Galaxies only--no starbursts Pure luminosity evolution

Cosmic Gamma kays from Normal Galaxies

Curves: BDF, Pavlidou, Prodanovic 2010 Points: Fermi (Abdo et al 2010)

Type la Supernovae?

Lien & BDF 2012

Thus far: core-collapse supernovae only But what about SN Type Ia?

- similar blast energy, shocks
- similar CR acceleration efficiency

Including SN la

- add somewhat to total cosmic SN rate: rates: Ia/CC ~ 1/4
- but also add to Milky Way CR flux which normalizes gamma-ray/SN ratio
- net EGB change is small!

Unless!

- long-lived la events occur in elliptical galaxies
- some hints of extended X-ray gas reservoirs

Humphrey+ 2011; Jiang & Kochanek 07; but David+ 06; Fukuzawa+ 06

- in extreme case, overpredict Fermi signal
- implies limits on hot gas content of ellipticals

Inverse Compton

Chakraborty & BDF 2012

- IC subdominant in cosmic SF signal
- but becomes important ~ 10 GeV
- increases and hardens SF signal

Cosmic Ray Calorimetry An Upper Limit to Gamma Rays from Star Formation

Calorimetry and Resolved Galaxies

Wang & BDF 2014

Cosmic Ray Calorimetry Limits to the Star-Forming GeV Background

Cosmic Rays and the Star-Forming Contribution

to the GeV Background

star-forming galaxies SN cosmic rays gamma rays

- Fermi era of star-forming galaxies Milky Way diffuse, LMC, SMC, M31, starbursts
- star-forming gammas encode cosmic-ray ecology

global emission fits simple model, but reality more complex

- Guaranteed component of diffuse Fermi background! spectral feature: redshifted Galactic (pionic) peak signal amplitude: probes cosmic star formation hardronic signal significant, spectrum must depart from power law cosmic-ray feedback on galaxies and cosmology energy/pressure/ionization source, primordial lithium problem
- The Thick Target/Calorimetry Limit
 beauty in simplicity: 2 parameters
 starbursts near calorimetric
 star-forming EGB upper limit near data: EGB not all from star form!
- Open Questions: Cosmic-Ray Archeaology
 CR acceleration efficiency & confinement dependence on galactic environment?
 CR evolution vs metallicity, redshift?
 CR differences: core collapse vs Type Ia?