Newly developed fluorescence detectors

Recent results from the Telescope Array experiment

Eiji Kido ICRR, Universit of Tokyo

2014/6/09

SCOPEAP

Outline

- Telescope Array(TA) Detectors
- Recent preliminary TA results
 - Energy spectrum
 - Mass composition
 - Anisotropy
- Summary

Telescope Array Collaboration

T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a, S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i}, K. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^l, D. Ikeda^h, N. Inoue^m, T. Ishii^l, R. Ishimori^b, H. Itoⁿ, D. Ivanov^{a,o}, C. C. H. Jui^a, K. Kadota^p, F. Kakimoto^b, O. Kalashev^q, K. Kasahara^r, H. Kawai^s, S. Kawakami^j, S. Kawana^m, K. Kawata^h, E. Kido^h, H. B. Kim^d, J. H. Kim^a, J. H. Kim^d, S. Kitamura^b, Y. Kitamura^b, V. Kuzmin^q, Y. J. Kwon^g, J. Lan^a, J.P. Lundquist^a, K. Machida^I, K. Martensⁱ, T. Matsuda^t, T. Matsuyama^j, J. N. Matthews^a, M. Minamino^j, K. Mukai^l, I. Myers^a, K. Nagasawa^m, S. Nagatakiⁿ, T. Nakamura^u, H. Nanpei^j, T. Nonaka^h, A. Nozato^f, S. Ogio^j, S. Oh^c, M. Ohnishi^h, H. Ohoka^h, K. Oki^h, T. Okuda^v, M. Onoⁿ, A. Oshima^j, S. Ozawa^r, I. H. Park^w, M. S. Pshirkov^x, D. C. Rodriguez^a, G. Rubtsov^q, D. Ryu^y, H. Sagawa^h, N. Sakurai^j, A. L. Sampson^a, L. M. Scott^o, P. D. Shah^a, F. Shibata^l, T. Shibata^h, H. Shimodaira^h, B. K. Shin^d, T. Shirahama^m, J. D. Smith^a, P. Sokolsky^a, R. W. Springer^a, B. T. Stokes^a, S. R. Stratton^{a,o}, T. A. Stroman^a, M. Takamura^e, A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^a, M. Tanaka^t, S. B. Thomas^a, G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b, Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c, K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinger^a, Z. Zundel^a

^aUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo,

¹Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ¹Osaka City University, ^kKanagawa University, ¹Univ. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^oRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, ^uKochi University, ^vRitsumeikan University, ^wSungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yChungnam National University, ^zEarthquake Research Institute, University of Tokyo, ^{aa}Hiroshima City University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University ² 3

Telescope Array Collaboration

T. Abu-Zayyad^a, M. Allen^a, R. Anderson^a, R. Azuma^b, E. Barcikowski^a, J. W. Belz^a, D. R. Bergman^a, S. A. Blake^a, R. Cady^a, M. J. Chae^c, B. G. Cheon^d, J. Chiba^e, M. Chikawa^f, W. R. Cho^g, T. Fujii^h, M. Fukushima^{h,i}, K. Goto^j, W. Hanlon^a, Y. Hayashi^j, N. Hayashida^k, K. Hibino^k, K. Honda^I, D. Ikeda^h, N. Inoue^m, T. Ishii^I, R. Ishimori^b, H. Itoⁿ, D. Ivanov^{a,Q}, C. C. H. Iui^a, K. Kadota^p, F. Kakimoto^b, O. Kalashov^a, K. Kasahara^r, H. Kawai^s, S. Kawakami^j, S. I. **~120 collaborators in 5 countries**

V. Kuzmin^q, Y. J. K J. N. Matthews^a, T. Nonaka^h, A. No S. Ozawa^r, I. H. Pa

A. L. Sampson^a, L

J. D. Smith^a, P. So

Japan, USA, Korea, Russia, Belgium A. Oshima^j, Sakurai^j, Sakurai Sakurai

A. Taketa^z, M. Takita^h, Y. Tameda^k, H. Tanaka^j, K. Tanaka^a, M. Tanaka^t, S. B. Thomas^a,
G. B. Thomson^a, P. Tinyakov^{q,x}, I. Tkachev^q, H. Tokuno^b, T. Tomida^{ab}, S. Troitsky^q, Y. Tsunesada^b, K. Tsutsumi^b,
Y. Uchihori^{ac}, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, H. Yamaoka^t, K. Yamazaki^j, J. Yang^c,
K. Yashiro^e, Y. Yoneda^j, S. Yoshida^s, H. Yoshii^{ad}, R. Zollinger^a, Z. Zundel^a

^aUniversity of Utah, ^bTokyo Institute of Technology, ^cEwha Womans University, ^dHanyang University, ^eTokyo University of Science, ^fKinki University, ^gYonsei University, ^hInstitute for Cosmic Ray Research, Univ. of Tokyo,

ⁱKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, ^jOsaka City University, ^kKanagawa University, ¹Univ. of Yamanashi, ^mSaitama University, ⁿAstrophysical Big Bang Laboratory, RIKEN, ^oRutgers University, ^pTokyo City University, ^qInstitute for Nuclear Research of the Russian Academy of Sciences, ^rWaseda University, ^sChiba University, ^tInstitute of Particle and Nuclear Studies, KEK, ^uKochi University, ^vRitsumeikan University, ^wSungkyunkwan University, ^xUniversite Libre de Bruxelles, ^yChungnam National University, ^zEarthquake Research Institute, University of Tokyo, ^{aa}Hiroshima City University, ^{ab}Advanced Science Institute, RIKEN, ^{ac}National Institute of Radiological Science, ^{ad}Ehime University **3**

TELESCOPE ARRAY HYBRID DETECTOR

507 scintillator detectors (SDs) covering 700 km² 3 fluorescence sites, 38 telescopes (~10% duty cycle) Surface detector full operation (~100% duty cycle) SD & FD Full operation from 11 May 2008 SD relative size:TA~7 AGASA ~ PAO/4 2014/6/09

Energy spectrum

SD Event Reconstructions

- Timing fit \rightarrow Shower Geometry
- Lateral distribution fit \rightarrow S(800) \rightarrow Energy from MC
- Angular resolution: 1.5°, Energy resolution: 20% E> 10¹⁹ eV

S(800): energy depositions at R=800(m) which are converted in VEM unit.

TA energy scale

slant depth [g/cm²]

Use E_{FD} energy: calorimetrically determined energy

- Systematic uncertainty of FD energy can be evaluated experimentally.
- Rescale factor of SD energy:1/1.27 from SDFD hybrid events

FD energy uncertainty

Source	ΔΕ/Ε
Fluorescence yield	11%
Detector	10%
Atmosphere	11%
Reconstruction	10%
Total	21%

5 years TA SD energy spectrum

TA spectrum and Auger spectrum

Rapporteur talk by Y.Tsunesada at ICRC2013

Energy scale uncertainty . TA: 21% . Auger: 14%

Fit result with protons from extra-galactic sources

Auger energy spectrum

2014/6/09

Karl-Heinz Kampert - Univ. Wuppertal

12

Mass composition

Xmax measurement by stereo FD

- FD observes shower development directly.
- Xmax is the most efficient parameter for determining primary particle type.

Determination of shower geometry by stereo is much better than mono. Reconstruction accuracy: 22g/cm²

Xmax distribution by 5 years stereo FD

Data:Nov. 2007- Nov. 2011

Red: Proton MC: QGSJET-II-03

Blue: Iron Both data and MC with reconstruction bias and cut bias

15

Xmax distribution by 5 years stereo FD

TA Xmax distribution for E > $10^{18.2}$ eV is consistent with qgsjet-II-03 proton prediction. We need more data for E > $10^{19.4}$ eV.

Xmax result by SD and FD hybrid

<Xmax> and Xmax distribution for E > 10^{18.2} eV is consistent with QGSjet-II-03 proton model by stereo and hybrid analysis

2014/6/09

Auger Xmax (updated at ICRC 2013)

- + statistics
- AFY updated.
- PSF updated.
- Calibration etc.

```
<Xmax> larger
+13 g/cm<sup>2</sup> at 10<sup>18</sup>eV ~
+6 g/cm<sup>2</sup> at 10<sup>19.5</sup>eV
```

```
RMS(Xmax) larger
< 10 g/cm<sup>2</sup>
for 10<sup>18-19</sup> eV
```


Showers at ultra-high energies are shallower and fluctuate less than proton simulations.

Anisotropy

Data set for anisotropy search

- Observation period: 08.05.12-13.05.04 (5 years) SD data
- Zenith angle up to 55 (deg)
- Geometrical acceptance: exposure ~ 6200 km² sr yr
- 2130 events above 10 EeV
- 132 events above 40 EeV
- 52 events above 57 EeV
- Angular resolution: better than 1.5 degree
- Energy resolution: ~20 %

Correlations with LSS

- 2Mass XSCz catalog
- 109000 galaxies, $K_{mag} < 12.5$ within 250 Mpc
- Gaussian smearing of directions
- Protons are assumed.
- $\boldsymbol{\cdot}$ Energy loss with CMB considered.

Comparibility with LSS expectation

E > 57 EeV Comparibility with isotropy: $p \sim 0.001$ for 6° smearing

Cross-Correlations with VCV AGNs

- Same catalog (VCV) and same parameters (3.1° angular scale , z ≦ 0.018, E > 57 EeV) are used as Pierre Auger.
- 17 events are correlated with nearby AGNs out of 42 events, while
 9.9 events are expected from random coincidences.
 →chance probability: 1.4 %
- 17events/42 events TA ⇔ 28 events/84 events latest Auger 2014/6/09

Anisotropy indicated with loose cut data

Significance from isotropy

No border cut and loose quality cuts \rightarrow 72 events E > 57 EeV Oversampling with 20 degree radius \rightarrow Max significance: 5.1 σ from isotropy Chance probability = 0.00014 (3.6 σ): 5.1 σ significance is found in this probability somewhere in the sky assuming isotropic cosmic-rays.

2014/6/09

Summary and future prospect

Energy spectrum is **consistent** with **proton model**. Xmax is **consistent** with **proton model**.

Intermediate 20° scale anisotropy is indicated

in **3.6** σ **C.L.** at highest energies (E > 57 EeV).

This feature is showing up

in some tests as incompatibility with isotropy.

- Distribution in SuperGalctic declination: p~0.003
- Autocorrelation function $p \sim 0.004$ at $\delta = 20^{\circ}$
- Correlation with LSS $p \sim 0.001$ for smearing 6°
- → This feature(Bright source? LSS?) should be tested with a few times larger statistics. and energy spectrum at highest energies
- \rightarrow TA extension plan (TAx4)

TA × 4 proposal

- Extend the coverage of TA surface array to about 3000 km² (4 times larger coverage than TA).
- 500 SDs with 2.08 km array spacing. (Japan) Re-use 10 FDs of HiRes-II. (USA)
- 2 years construction3 years observation
- Anisotropy Search:
- $\sim 3\sigma$ 5 years TA $\rightarrow \sim 5\sigma$ 20 years TA

2014/6/09