The Case For A Bright Radio Background

Al Kogut Goddard Space Flight Center

•

The Radio Sky

Isotropic Component

Known from radio surveys, but assumed to be Galactic

Kogut et al 2011, ApJ, 734, 4 Fixsen et al. 2011, ApJ, 734, 5

Where's Waldo?

Existence of isotropic component known for 50 years. The question is, where does it originate?

3 Possibilities for Isotropic Emission

- Small patch (centered on sun)
- Big patch (Galactic halo)
- Extragalactic background

Simplest choice: Emission originates within Galaxy (somewhere)

Galactic Halo

2-component model for Galactic radio emission Disk Semi-major axis = 2.1 Semi-minor axis = 0.4 Halo Radius = 1.8 (in units of the solar circle)

Adjust volume emissivity to match radio data

Good fit to radio maps, but is such a bright halo likely?

Halo Search in Edge-On Spirals

Model prediction: If Milky Way is a typical spiral galaxy, then edge-on spirals should show similar bright halo

Halo Search in Edge-On Spirals

Model prediction: If Milky Way is a typical spiral galaxy, then edge-on spirals should show similar bright halo

Local Emission from Spherical Patch

Localized enhancement ~ 600 pc radius Cosmic ray density? Magnetic field? Sun is close enough to center for isotropy

Test Using Synchrotron Polarization

Large-Scale Polarization

WMAP 23 GHz polarization Negligible Faraday rotation

> Observed polarization dominated by smooth regular field even in faint regions of the sky

Polarization From Small Patch

Polarized synchrotron $\propto B_{\perp}$

If we were inside small patch with uniform field ...

- \bullet Expected polarization ~165 (f/0.75) μK at 22 GHz
- Observed value < 9 μ K
- Fractional polarization f < 0.04 for each line of sight

Synchrotron Depolarization

Simulate magnetic field with Kolmogorov power spectrum

Compare polarized to unpolarized synchrotron intensities for uniform volume emissivity

Getting <f> = 0.045 requires over 10⁵ magnetic domains Domain size < 0.001 pc De-polarization from random isotropic magnetic field

Multi-Messenger Tests

Radio / Far-IR Correlation

One of tightest correlations in astrophysics Persists on scales 50 pc to 15 kpc

Estimate polar cap brightness from radio / FIR correlation

DIRBE FIR * <q> from external galaxies
 T = 5.9 ± 3.5 K at 408 MHz

 DIRBE FIR * <q> from local (Milky Way) correlation
 T = 4.8 ± 1.5 K at 408 MHz

Factor of 4 below observed value (20 K)

Either Galaxy is outlier at 5--10 standard deviations, or the isotropic component is not Galactic in origin

Extragalactic Origin?

Galactic origin for isotropic emission requires multiple anomalies

- Bright radio halo
- Radio/FIR correlation
- Magnetic field structure

Extragalactic origin removes anomalies

- No need for radio halo
- Restores normal radio/FIR correlation
- Higher fractional polarization / larger domains (few pc)
- **BUT** need new faint source population

Cosmic Radio Background

Source Counts

How many sources does it take 'till we know That too many photons have fried -- Bob Dylan, "Blowin' In The Wind"

Need a boatload of faint sources Not yet seen, but certainly possible!

Multi-Messenger Hints?

Radio / X-Ray Connection

Compton Scattering

Cosmic rays Compton scatter photons to soft X-ray energies

Need mechanism to enhance synchrotron while not over-producing X-ray background

Isotropic component must originate from region with $|B| > 1 \ \mu G$

Sources? What Sources?

Requirements for extragalactic background:

A lot of faint sources ... Bright in synchrotron ... With a high magnetic field ... But without appreciable far-IR emission

Early Universe?

- Supernova from black hole formation
- Large number of potential source sites
- High magnetic field
- Zero metalicity: No dust \rightarrow minimal FIR

Potential new source population at sub- μ Jy levels

Bierman et al. 2013, MNRAS

Tests for Radio Background

Source counts at nJy levels

Millimeter polarization maps

Absolutely-calibrated sky surveys at 100-200 GHz