Cosmic Neutrinos in IceCube

Naoko Kurahashi Neilson

University of Wisconsin, Madison IceCube Collaboration

HEM KICP UChicago – 6/9/2014

Outline

- IceCube capabilities
- The discovery analysis with updated data
- Other IceCube analyses and what they tell us - is there a coherent picture?
- Future outlook *input from you*

Outline

- IceCube capabilities
- The discovery analysis with updated data
- Other IceCube analyses and what they tell us - is there a coherent picture?
- Future outlook *input from you*

Topologies of different event types

<figure>

 $\nu_{\mu} + N \to \mu + X$

Charge Current (others) Neutral Current

Track

Shower

Reconstruction Capabilities

		@ 100 TeV energies		
		Energy Reconstruction*	Directional Reconstruction*	
	Tracks	~factor 2	~0.5 degrees	
	Showers	10%	~15 degrees	
* against primary neutrino energy and direction				

Reconstruction maps in local coordinates

IceCube backgrounds are atmospheric shower components

4 ways of dealing w/ backgrounds

^{5 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4} -log₁₀ p

Outline

- IceCube capabilities
- The discovery analysis with updated data
- Other IceCube analyses and what they tell us - *is there a coherent picture?*
- Future outlook *input from you*

Analysis 1: High Energy Starting Events

IceCube Discovers Comic Neutrinos

Declination Distribution of Events

Declination Distribution of Events

= zenith

ALL EVENTS

EVENTS > 60 TeV

Declination Distribution of Events

= zeniin

ALL EVENTS

EVENTS > 100 TeV

Properties observed from Analysis 1

Flux Level: ~1 x 10⁻⁸ E² [/GeV/cm²/s/sr] per flavor Spectral index: -2.3

Isotropy: consistent with isotropic

27 from southern sky, 9 from northern sky Background includes muons which is only from the southern sky At high energy, earth absorption of neutrinos (both signal and bkg)

ν flavor ratio: consistent with 1:1:1

9 tracks, 27 showers Background is track rich (mesons branch to more muons then electrons) Signal is shower rich (only 1/6 interaction channels create tracks)

- No significant clustering
- No significant clustering around the galactic plane
- Extragalactic component very likely

Outline

- IceCube capabilities
- The discovery analysis with updated data
- Other IceCube analyses and what they tell us

- is there a coherent picture?

• Future outlook – *input from you*

Analysis 2: High Energy Upgoing Tracks

Data is well-resolved upgoing tracks

Analysis 3: Point Source Search of Track Events

No evidence of point source \rightarrow Limit on point source flux

Future Analysis 4: Point source search with starting tracks

Great improvement in the southern sky!

Lets look at the sky map from Analysis1 again....

Atmospheric neutrinos can have accompanying muons from the same vertex

The event is ~200TeV at ~50 degrees

Future Analysis 5: Spectral fit on starting showers

Outline

- IceCube capabilities
- The discovery analysis with updated data
- Other IceCube analyses and what they tell us - is there a coherent picture?
- Future outlook *input from you*

Source speculations

- GRBs seem unlikely (IceCube limit)
- AGN maybe (extragalactic compatible to isotropy, but spectrum?)
- Starburst Galaxies (can't be close-by & luminous due to IceCube limit)
- Dark Matter (what's the "smoking gun?")
- Galactic component still possible! (neutrinos don't interact
 → background is not dark → hard for galactic component
 to "stick out".... but maybe still our best bet!)

Optimism: History is on our side!

Gamma-ray Astronomy

Ţ

Diffuse signal \rightarrow first source \rightarrow catalog!

X-ray Astronomy

Diffuse signal \rightarrow first source \rightarrow catalog

(Sun detected in x-rays 1940's)

Figure 7.7: The discovery record of the X-ray source Sco X-1 and the X-ray background emission Giacconi and his colleagues in a rocket flight of June 1962. The prominent source was observed both detectors, as was the diffuse background emission (Giacconi et al., 1962).

"The Cosmic Century" M. S. Longair

Only question: How do we get there quickly and efficiently?

Next Generation IceCube

Existing IceCube, icetop and planned PINGU infill

Design studies under way!

This figure: 120 strings Depth <u>1.35 to 2.7 km</u> 80 DOMs/string <u>300 m spacing</u>

Input from you!

- What's the priority? Diffuse flux? Anisotropy? Or point sources?
- Background rejection vs statistics (Is a single event that's not from known backgrounds at 5σ a point source? actually, stay tuned on this!)
- Focus on galactic (southern sky) or extragalactic?
- Energy threshold, PSF vs volume, etc

Backups

Likelihood Search for a Source - Test Statistic (TS) Calculation -

Maximize the likelihood L assuming a source at point x with energy spectrum E^{γ}

TS is calculated for every point in the sky x

$$TS(x) = 2 \times \log \left(\frac{L(x)}{L_0(x)} \right)$$

where $L_0 = L(x, n_s = 0)$

27

Could it be Starburst Galaxies?

IceCube does a stacking analysis on close-by starburst galaxies using the traditional muon data set and has a strong upper limit arxiv:1307.6669

Stacking of catalog of 127 starbursts

- Within z < 0.03
- F_{FIR}(60 micron) > 4 Jy
- $F_{radio}(1.4 \text{ GHz}) > 20 \text{ mJy}$

Unbroken E⁻² flux limit: 7 x 10⁻¹⁰ E² GeV cm⁻²s⁻¹sr⁻¹

Bright, nearby starbursts can only be responsible for ~< 10% of HESE flux

Speculation of a cutoff

A flux level of ~10⁻⁸E⁻²[GeV/cm²/s/str] predicts another 3-6 events in 2-10PeV range

Glashow resonance

