High Energy Messenger Workshop KICP, June 10 2014 Foteini Oikonomou

Anisotropies in the arrival directions of Ultra-High Energy Cosmic Rays: Current status and prospects with a next-generation instrument

Introduction

- 50 EeV protons:
 - GZK Horizon ~ few hundred Mpc
 - Deflections $\lesssim 3^{\circ}$ in IGMF
 - In the Galactic B-field $\,\theta\,$ ~ 2 $^{\circ}$ ⁻ 4 $^{\circ}$
 - Larger through Galactic centre
- Iron much larger deflections, $\theta \sim Z \times \theta_{proton}$
- Anisotropy expected for proton UHECRs
- Uncertain composition complicates expectations -> one way to model it, introduce an isotropic background (large deflections)

Arrival directions of UHECRs observed by Auger

Protons E > 55 EeV, PSCz

IRAS PSCz ~full sky ~ **10000 galaxies**, ~far-IR selected: excellent probe of star-formation activity

Protons E > 55 EeV, 6dF

UHECRs with E > 55 EeV detected until end 2009

Calculations take into account:

- proton energy losses
- galaxy weights as a function of redshift
- Auger exposure
- galaxy survey selection functions

Arrival directions of UHECRs observed by Auger

Protons E > 55 EeV, PSCz

IRAS PSCz ~full sky ~ **10000 galaxies**, ~far-IR selected: excellent probe of star-formation activity

Protons E > 55 EeV, 6dF

2MASS 6dF ~full sky ~ 100000 galaxies, ~near-IR selected: excellent probe of ellipticals, minimal dust a extinction 3

UHECRs with E > 55 EeV detected until end 2009

Calculations take into account:

- proton energy losses
- galaxy weights as a function of redshift
- Auger exposure
- galaxy survey selection functions

FO et al 2013: JCAP05(2013)015

Correlation with Large Scale Structure: 2009 dataset: 69 events E > 55 EeV

~ 10% uncertainty due to binning.

FO et al 2013: JCAP05(2013)015

4

Correlation with Large Scale Structure: 2009 dataset: 69 events E > 55 EeV

Correlation with Large Scale Structure: Full set to April 2014: 142 events E > 55 EeV

Piso, PSCz = 7%

PPSCz,protons,no deflections < 0.1%

P6dF, protons, no deflections < 0.1%

The future: Will better statistics help?

JEM-EUSO Coll. 2013-arXiv:1305.2478

What type of clustering?

Source Density:

Absence of significant number of multiplets in Auger data suggests a relatively large source number density

 $\bar{n_0} \gtrsim 10^{-5} - 10^{-4} \text{ Mpc}^{-3}$ (cf. n_{gal} ~10⁻² Mpc⁻³) Auger Coll 2013, FO et al 2013, Takami & Sato 2009..

horizon for ~ 50 EeV protons

Modelling different UHECR source populations

FO, Kotera, Abdalla, in prep.

Can we distinguish between astrophysical scenarios with anisotropy?

FO, Kotera, Abdalla, in prep.

Can we distinguish between astrophysical scenarios with anisotropy?

FO, Kotera, Abdalla, in prep.

Can we distinguish between astrophysical scenarios with anisotropy?

Are we going to see anisotropy with JEM-EUSO?

For what proton fraction?

If we can determine the composition?

Distinguish between bias models?

2100 events, E>50 EeV, $n_0 \sim 10^{-2}$ Mpc⁻³

With ≥1000 protons

Conclusions

- * Auger (my analysis): ~2σ anisotropy hints look out for new Auger publication soon.
- Next generation instrument (~2000 events):
 - Clustering of events around a few sources
 - <u>or:</u> Clustering of source distribution (lower E and/or higher number density):
 - ≥40% proton composition, >400 protons -> statistically significant anisotropy
 - 1000 protons: distinguish different astrophysical scenarios

Aims:

- ✦ High statistics will help whatever the source number density and threshold energy
- Distinguishing p/heavy elements would help

Conclusions

- * Auger (my analysis): ~2σ anisotropy hints look out for new Auger publication soon.
- Next generation instrument (~2000 events):
 - Clustering of events around a few sources
 - <u>or:</u> Clustering of source distribution (lower E and/or higher number density):
 - ≥40% proton composition, >400 protons -> statistically significant anisotropy
 - 1000 protons: distinguish different astrophysical scenarios

Aims:

- ✦ High statistics will help whatever the source number density and threshold energy
- Distinguishing p/heavy elements would help

